Core ridge functions

The core functions for graphical ridge regression are:

ridgeP()

Ridge estimation for high-dimensional precision matrices

default.target()

Generate a (data-driven) default target for usage in ridge-type shrinkage estimation

createS()

Simulate sample covariances or datasets

Fused ridge functions

The core fused graphical ridge regression are:

GGMnetworkStats.fused()

Gaussian graphical model network statistics

GGMpathStats.fused()

Fused gaussian graphical model node pair path statistics

KLdiv.fused()

Fused Kullback-Leibler divergence for sets of distributions

NLL() PNLL() NLL.fused() PNLL.fused()

Evaluate the (penalized) (fused) likelihood

default.target.fused()

Generate data-driven targets for fused ridge estimation

optPenalty.fused.grid() optPenalty.fused.auto() optPenalty.fused()

Identify optimal ridge and fused ridge penalties

ridgeP.fused()

Fused ridge estimation

sparsify.fused()

Determine support of multiple partial correlation/precision matrices

fused.test()

Test the necessity of fusion

createS()

Simulate sample covariances or datasets

Postprocessing

Post-processing of estimated inverse covariance matrices:

sparsify()

Determine the support of a partial correlation/precision matrix

Data

Datasets shipped with rags2ridges:

ADdata

R-objects related to metabolomics data on patients with Alzheimer's Disease

Helper & auxiliary functions

Various helpful functions:

is.Xlist()

Test if fused list-formats are correctly used

isSymmetricPD() isSymmetricPSD()

Test for symmetric positive (semi-)definiteness

NLL() PNLL() NLL.fused() PNLL.fused()

Evaluate the (penalized) (fused) likelihood

All

All exported functions and datasets:

ADdata

R-objects related to metabolomics data on patients with Alzheimer's Disease

CNplot()

Visualize the spectral condition number against the regularization parameter

Communities()

Search and visualize community-structures

DiffGraph()

Visualize the differential graph

GGMblockNullPenalty()

Generate the distribution of the penalty parameter under the null hypothesis of block-independence

GGMblockTest()

Test for block-indepedence

GGMmutualInfo()

Mutual information between two sets of variates within a multivariate normal distribution

GGMnetworkStats()

Gaussian graphical model network statistics

GGMnetworkStats.fused()

Gaussian graphical model network statistics

GGMpathStats()

Gaussian graphical model node pair path statistics

GGMpathStats.fused()

Fused gaussian graphical model node pair path statistics

KLdiv()

Kullback-Leibler divergence between two multivariate normal distributions

KLdiv.fused()

Fused Kullback-Leibler divergence for sets of distributions

NLL() PNLL() NLL.fused() PNLL.fused()

Evaluate the (penalized) (fused) likelihood

Ugraph()

Visualize undirected graph

Union()

Subset 2 square matrices to union of variables having nonzero entries

adjacentMat()

Transform real matrix into an adjacency matrix

conditionNumberPlot()

Visualize the spectral condition number against the regularization parameter

covML()

Maximum likelihood estimation of the covariance matrix

covMLknown()

Maximum likelihood estimation of the covariance matrix with assumptions on its structure

createS()

Simulate sample covariances or datasets

default.penalty()

Construct commonly used penalty matrices

default.target()

Generate a (data-driven) default target for usage in ridge-type shrinkage estimation

default.target.fused()

Generate data-driven targets for fused ridge estimation

edgeHeat()

Visualize (precision) matrix as a heatmap

evaluateS()

Evaluate numerical properties square matrix

evaluateSfit()

Visual inspection of the fit of a regularized precision matrix

fullMontyS()

Wrapper function

fused.test()

Test the necessity of fusion

is.Xlist()

Test if fused list-formats are correctly used

isSymmetricPD() isSymmetricPSD()

Test for symmetric positive (semi-)definiteness

kegg.target()

Construct target matrix from KEGG

loss()

Evaluate regularized precision under various loss functions

momentS()

Moments of the sample covariance matrix.

optPenalty.LOOCV()

Select optimal penalty parameter by leave-one-out cross-validation

optPenalty.LOOCVauto()

Automatic search for optimal penalty parameter

optPenalty.aLOOCV()

Select optimal penalty parameter by approximate leave-one-out cross-validation

optPenalty.fused.grid() optPenalty.fused.auto() optPenalty.fused()

Identify optimal ridge and fused ridge penalties

optPenalty.kCV()

Select optimal penalty parameter by \(K\)-fold cross-validation

optPenalty.kCVauto()

Automatic search for optimal penalty parameter

optPenaltyPchordal()

Automatic search for penalty parameter of ridge precision estimator with known chordal support

pcor()

Compute partial correlation matrix or standardized precision matrix

hist(<ptest>) plot(<ptest>)

Plot the results of a fusion test

pooledS() pooledP()

Compute the pooled covariance or precision matrix estimate

print(<optPenaltyFusedGrid>) plot(<optPenaltyFusedGrid>)

Print and plot functions for fused grid-based cross-validation

print(<ptest>) summary(<ptest>)

Print and summarize fusion test

pruneMatrix()

Prune square matrix to those variables having nonzero entries

rags2ridges-package

Ridge estimation for high-dimensional precision matrices

ridgeP()

Ridge estimation for high-dimensional precision matrices

ridgeP.fused()

Fused ridge estimation

ridgePathS()

Visualize the regularization path

ridgePchordal()

Ridge estimation for high-dimensional precision matrices with known chordal support

ridgePsign()

Ridge estimation for high-dimensional precision matrices with known sign of off-diagonal precision elements.

ridgeS()

Ridge estimation for high-dimensional precision matrices

rmvnormal()

Multivariate Gaussian simulation

sparsify()

Determine the support of a partial correlation/precision matrix

sparsify.fused()

Determine support of multiple partial correlation/precision matrices

support4ridgeP()

Support of the adjacency matrix to cliques and separators.

symm()

Symmetrize matrix