R/rags2ridges.R
KLdiv.RdFunction calculating the Kullback-Leibler divergence between two multivariate normal distributions.
KLdiv(Mtest, Mref, Stest, Sref, symmetric = FALSE)A numeric mean vector for the approximating multivariate
normal distribution.
A numeric mean vector for the true/reference multivariate
normal distribution.
A covariance matrix for the approximating multivariate
normal distribution.
A covariance matrix for the true/reference multivariate
normal distribution.
A logical indicating if the symmetric version of
Kullback-Leibler divergence should be calculated.
Function returns a numeric representing the (symmetric)
Kullback-Leibler divergence.
The Kullback-Leibler (KL) information (Kullback and Leibler, 1951; also known
as relative entropy) is a measure of divergence between two probability
distributions. Typically, one distribution is taken to represent the `true'
distribution and functions as the reference distribution while the other is
taken to be an approximation of the true distribution. The criterion then
measures the loss of information in approximating the reference distribution.
The KL divergence between two \(p\)-dimensional multivariate normal
distributions
\(\mathcal{N}^{0}_{p}(\boldsymbol{\mu}_{0}, \mathbf{\Sigma}_{0})\) and \(\mathcal{N}^{1}_{p}(\boldsymbol{\mu}_{1}, \mathbf{\Sigma}_{1})\)
is given as
$$
\mathrm{I}_{KL}(\mathcal{N}^{0}_{p} \| \mathcal{N}^{1}_{p}) =
\frac{1}{2}\left\{\mathrm{tr}(\mathbf{\Omega}_{1}\mathbf{\Sigma}_{0})
+ (\boldsymbol{\mu}_{1} - \boldsymbol{\mu}_{0})^{\mathrm{T}}
\mathbf{\Omega}_{1}(\boldsymbol{\mu}_{1} - \boldsymbol{\mu}_{0}) - p
- \ln|\mathbf{\Sigma}_{0}| + \ln|\mathbf{\Sigma}_{1}| \right\},
$$
where \(\mathbf{\Omega} = \mathbf{\Sigma}^{-1}\). The KL divergence is not
a proper metric as \(\mathrm{I}_{KL}(\mathcal{N}^{0}_{p} \|
\mathcal{N}^{1}_{p}) \neq \mathrm{I}_{KL}(\mathcal{N}^{1}_{p} \|
\mathcal{N}^{0}_{p})\). When symmetric = TRUE the function calculates
the symmetric KL divergence (also referred to as Jeffreys information), given
as
$$
\mathrm{I}_{KL}(\mathcal{N}^{0}_{p} \| \mathcal{N}^{1}_{p}) +
\mathrm{I}_{KL}(\mathcal{N}^{1}_{p} \| \mathcal{N}^{0}_{p}).
$$
Kullback, S. and Leibler, R.A. (1951). On Information and Sufficiency. Annals of Mathematical Statistics 22: 79-86.
## Define population
set.seed(333)
p = 25
n = 1000
X = matrix(rnorm(n*p), nrow = n, ncol = p)
colnames(X)[1:25] = letters[1:25]
Cov0 <- covML(X)
mean0 <- colMeans(X)
## Obtain sample from population
samples <- X[sample(nrow(X), 10),]
Cov1 <- covML(samples)
mean1 <- colMeans(samples)
## Regularize singular Cov1
P <- ridgeP(Cov1, 10)
CovR <- solve(P)
## Obtain KL divergence
KLdiv(mean1, mean0, CovR, Cov0)
#> [1] 2.809927