R/rags2ridges.R
default.target.Rd
Function that generates a (data-driven) default target for usage in (type I)
ridge shrinkage estimation of the precision matrix (see
ridgeP
). The target that is generated is to be understood in
precision terms. Most options for target generation result in a target that
implies a situation of rotation equivariant estimation (see
ridgeP
).
default.target(S, type = "DAIE", fraction = 1e-04, const)
Sample covariance matrix
.
A character
determining the type of default target. Must
be one of: "DAIE", "DIAES", "DUPV", "DAPV", "DCPV", "DEPV", "Null".
A numeric
indicating the fraction of the largest
eigenvalue below which an eigenvalue is considered zero.
A numeric
constant representing the partial variance.
Function returns a target matrix
.
The function can generate the following default target matrices:
DAIE
: Diagonal matrix with average of inverse nonzero
eigenvalues of S as entries;
DIAES
: Diagonal matrix with
inverse of average of eigenvalues of S as entries;
DUPV
:
Diagonal matrix with unit partial variance as entries (identity matrix);
DAPV
: Diagonal matrix with average of inverse variances of
S
as entries;
DCPV
: Diagonal matrix with constant
partial variance as entries. Allows one to use other constant than DAIE,
DIAES, DUPV, DAPV, and in a sense Null;
DEPV
: Diagonal matrix
with the inverse variances of S
as entries;
Null
: Null matrix.
The targets DUPV
, DCPV
, and Null
are not
data-driven in the sense that the input matrix S
only provides
information on the size of the desired target. The targets DAIE
,
DIAES
, DAPV
, and DEPV
are data-driven in the sense that
the input matrix S
provides the information for the diagonal entries.
The argument fraction
is only used when type = "DAIE"
. The
argument const
is only used when type = "DCPV"
. All types
except DEPV
and Null
lead to rotation equivariant alternative
and archetypal Type I ridge estimators. The target Null
also leads to
a rotation equivariant alternative Type II ridge estimator (see
ridgeP
). Note that the DIAES
, DAPV
, and
DEPV
targets amount to the identity matrix when the sample covariance
matrix S
is standardized to be the correlation matrix. The same goes,
naturally, for the DCPV
target when const
is specified to be
1.
van Wieringen, W.N. & Peeters, C.F.W. (2016). Ridge Estimation of Inverse Covariance Matrices from High-Dimensional Data, Computational Statistics & Data Analysis, vol. 103: 284-303. Also available as arXiv:1403.0904v3 [stat.ME].
## Obtain some (high-dimensional) data
p = 25
n = 10
set.seed(333)
X = matrix(rnorm(n*p), nrow = n, ncol = p)
colnames(X)[1:25] = letters[1:25]
Cx <- covML(X)
## Obtain default diagonal target matrix
default.target(Cx)
#> a b c d e f g
#> a 0.7495251 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
#> b 0.0000000 0.7495251 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
#> c 0.0000000 0.0000000 0.7495251 0.0000000 0.0000000 0.0000000 0.0000000
#> d 0.0000000 0.0000000 0.0000000 0.7495251 0.0000000 0.0000000 0.0000000
#> e 0.0000000 0.0000000 0.0000000 0.0000000 0.7495251 0.0000000 0.0000000
#> f 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.7495251 0.0000000
#> g 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.7495251
#> h 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
#> i 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
#> j 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
#> k 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
#> l 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
#> m 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
#> n 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
#> o 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
#> p 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
#> q 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
#> r 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
#> s 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
#> t 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
#> u 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
#> v 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
#> w 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
#> x 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
#> y 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
#> h i j k l m n
#> a 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
#> b 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
#> c 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
#> d 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
#> e 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
#> f 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
#> g 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
#> h 0.7495251 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
#> i 0.0000000 0.7495251 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
#> j 0.0000000 0.0000000 0.7495251 0.0000000 0.0000000 0.0000000 0.0000000
#> k 0.0000000 0.0000000 0.0000000 0.7495251 0.0000000 0.0000000 0.0000000
#> l 0.0000000 0.0000000 0.0000000 0.0000000 0.7495251 0.0000000 0.0000000
#> m 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.7495251 0.0000000
#> n 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.7495251
#> o 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
#> p 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
#> q 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
#> r 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
#> s 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
#> t 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
#> u 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
#> v 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
#> w 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
#> x 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
#> y 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
#> o p q r s t u
#> a 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
#> b 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
#> c 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
#> d 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
#> e 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
#> f 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
#> g 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
#> h 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
#> i 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
#> j 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
#> k 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
#> l 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
#> m 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
#> n 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
#> o 0.7495251 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
#> p 0.0000000 0.7495251 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
#> q 0.0000000 0.0000000 0.7495251 0.0000000 0.0000000 0.0000000 0.0000000
#> r 0.0000000 0.0000000 0.0000000 0.7495251 0.0000000 0.0000000 0.0000000
#> s 0.0000000 0.0000000 0.0000000 0.0000000 0.7495251 0.0000000 0.0000000
#> t 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.7495251 0.0000000
#> u 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.7495251
#> v 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
#> w 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
#> x 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
#> y 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
#> v w x y
#> a 0.0000000 0.0000000 0.0000000 0.0000000
#> b 0.0000000 0.0000000 0.0000000 0.0000000
#> c 0.0000000 0.0000000 0.0000000 0.0000000
#> d 0.0000000 0.0000000 0.0000000 0.0000000
#> e 0.0000000 0.0000000 0.0000000 0.0000000
#> f 0.0000000 0.0000000 0.0000000 0.0000000
#> g 0.0000000 0.0000000 0.0000000 0.0000000
#> h 0.0000000 0.0000000 0.0000000 0.0000000
#> i 0.0000000 0.0000000 0.0000000 0.0000000
#> j 0.0000000 0.0000000 0.0000000 0.0000000
#> k 0.0000000 0.0000000 0.0000000 0.0000000
#> l 0.0000000 0.0000000 0.0000000 0.0000000
#> m 0.0000000 0.0000000 0.0000000 0.0000000
#> n 0.0000000 0.0000000 0.0000000 0.0000000
#> o 0.0000000 0.0000000 0.0000000 0.0000000
#> p 0.0000000 0.0000000 0.0000000 0.0000000
#> q 0.0000000 0.0000000 0.0000000 0.0000000
#> r 0.0000000 0.0000000 0.0000000 0.0000000
#> s 0.0000000 0.0000000 0.0000000 0.0000000
#> t 0.0000000 0.0000000 0.0000000 0.0000000
#> u 0.0000000 0.0000000 0.0000000 0.0000000
#> v 0.7495251 0.0000000 0.0000000 0.0000000
#> w 0.0000000 0.7495251 0.0000000 0.0000000
#> x 0.0000000 0.0000000 0.7495251 0.0000000
#> y 0.0000000 0.0000000 0.0000000 0.7495251