Function computing the partial correlation matrix or standardized precision matrix from an input precision matrix.
pcor(P, pc = TRUE)
(Possibly regularized) precision matrix
.
A logical
indicating if the partial correlation matrix
should be computed.
A partial correlation matrix
or a standardized precision
matrix
.
The function assumes that the input matrix
is a precision matrix. If
pc = FALSE
the standardized precision matrix, rather than the partial
correlation matrix, is given as the output value. The standardized precision
matrix is equal to the partial correlation matrix up to the sign of
off-diagonal entries.
## Obtain some (high-dimensional) data
p = 25
n = 10
set.seed(333)
X = matrix(rnorm(n*p), nrow = n, ncol = p)
colnames(X)[1:25] = letters[1:25]
Cx <- covML(X)
## Obtain regularized precision matrix
P <- ridgeP(Cx, lambda = 10, type = "Alt")
## Obtain partial correlation matrix
pcor(P)
#> A 25 x 25 ridge precision matrix estimate with lambda = 10.000000
#> a b c d e f …
#> a 1.000000000 0.004284722 0.08180442 0.003301997 -0.023255824 -0.001036324 …
#> b 0.004284722 1.000000000 0.02534712 0.010534164 0.038818065 -0.008505235 …
#> c 0.081804421 0.025347119 1.00000000 0.048992900 -0.033888174 -0.020240055 …
#> d 0.003301997 0.010534164 0.04899290 1.000000000 -0.031578662 -0.002684267 …
#> e -0.023255824 0.038818065 -0.03388817 -0.031578662 1.000000000 0.009620035 …
#> f -0.001036324 -0.008505235 -0.02024006 -0.002684267 0.009620035 1.000000000 …
#> … 19 more rows and 19 more columns