R/rags2ridges.R
optPenalty.kCV.Rd
Function that selects the optimal penalty parameter for the
ridgeP
call by usage of \(K\)-fold cross-validation. Its
output includes (a.o.) the precision matrix under the optimal value of the
penalty parameter.
optPenalty.kCV(
Y,
lambdaMin,
lambdaMax,
step,
fold = nrow(Y),
cor = FALSE,
target = default.target(covML(Y)),
type = "Alt",
output = "light",
graph = TRUE,
verbose = TRUE
)
Data matrix
. Variables assumed to be represented by columns.
A numeric
giving the minimum value for the penalty
parameter.
A numeric
giving the maximum value for the penalty
parameter.
An integer
determining the number of steps in moving
through the grid [lambdaMin
, lambdaMax
].
A numeric
or integer
specifying the number of
folds to apply in the cross-validation.
A logical
indicating if the evaluation of the LOOCV score
should be performed on the correlation scale.
A target matrix
(in precision terms) for Type I ridge
estimators.
A character
indicating the type of ridge estimator to be
used. Must be one of: "Alt", "ArchI", "ArchII".
A character
indicating if the output is either heavy or
light. Must be one of: "all", "light".
A logical
indicating if the grid search for the optimal
penalty parameter should be visualized.
A logical
indicating if information on progress should
be printed on screen.
An object of class list:
A numeric
giving
the optimal value of the penalty parameter.
A matrix
representing the precision matrix of the chosen type (see
ridgeP
) under the optimal value of the penalty parameter.
A numeric
vector representing all values of the
penalty parameter for which cross-validation was performed; Only given when
output = "all"
.
A numeric
vector representing the
mean of cross-validated negative log-likelihoods for each value of the
penalty parameter given in lambdas
; Only given when output =
"all"
.
The function calculates a cross-validated negative log-likelihood score
(using a regularized ridge estimator for the precision matrix) for each
value of the penalty parameter contained in the search grid by way of
\(K\)-fold cross-validation. The value of the penalty parameter that
achieves the lowest cross-validated negative log-likelihood score is deemed
optimal. The penalty parameter must be positive such that lambdaMin
must be a positive scalar. The maximum allowable value of lambdaMax
depends on the type of ridge estimator employed. For details on the type of
ridge estimator one may use (one of: "Alt", "ArchI", "ArchII") see
ridgeP
. The ouput consists of an object of class list (see
below). When output = "light"
(default) only the optLambda
and
optPrec
elements of the list are given.
When cor = TRUE
correlation matrices are used in the
computation of the (cross-validated) negative log-likelihood score, i.e.,
the \(K\)-fold sample covariance matrix is a matrix on the correlation
scale. When performing evaluation on the correlation scale the data are
assumed to be standardized. If cor = TRUE
and one wishes to used the
default target specification one may consider using target =
default.target(covML(Y, cor = TRUE))
. This gives a default target under the
assumption of standardized data.
Under the default setting of the fold-argument, fold = nrow(Y)
, one
performes leave-one-out cross-validation.
## Obtain some (high-dimensional) data
p = 25
n = 10
set.seed(333)
X = matrix(rnorm(n*p), nrow = n, ncol = p)
colnames(X)[1:25] = letters[1:25]
## Obtain regularized precision under optimal penalty using K = n
OPT <- optPenalty.kCV(X, lambdaMin = .5, lambdaMax = 30, step = 100); OPT
#> Perform input checks...
#> Calculating cross-validated negative log-likelihoods...
#> lambda = 0.5 done
#> lambda = 0.521112064796442 done
#> lambda = 0.543115568152822 done
#> lambda = 0.56604815028642 done
#> lambda = 0.589949040739926 done
#> lambda = 0.614859125489326 done
#> lambda = 0.640821016885354 done
#> lambda = 0.667879126548165 done
#> lambda = 0.696079741339917 done
#> lambda = 0.725471102545235 done
#> lambda = 0.756103488394997 done
#> lambda = 0.788029300074619 done
#> lambda = 0.821303151363959 done
#> lambda = 0.855981962062195 done
#> lambda = 0.89212505535748 done
#> lambda = 0.929794259307953 done
#> lambda = 0.969054012607691 done
#> lambda = 1.00997147481854 done
#> lambda = 1.0526166412564 done
#> lambda = 1.09706246272843 done
#> lambda = 1.14338497032617 done
#> lambda = 1.19166340548777 done
#> lambda = 1.24198035555219 done
#> lambda = 1.29442189503684 done
#> lambda = 1.34907773288074 done
#> lambda = 1.40604136590477 done
#> lambda = 1.46541023875169 done
#> lambda = 1.52728591057948 done
#> lambda = 1.59177422879317 done
#> lambda = 1.65898551011235 done
#> lambda = 1.72903472928405 done
#> lambda = 1.80204171576394 done
#> lambda = 1.87813135870213 done
#> lambda = 1.95743382058443 done
#> lambda = 2.04008475989428 done
#> lambda = 2.12622556317653 done
#> lambda = 2.21600358689979 done
#> lambda = 2.30957240953135 done
#> lambda = 2.40709209425555 done
#> lambda = 2.5087294627854 done
#> lambda = 2.61465838073554 done
#> lambda = 2.72506005504483 done
#> lambda = 2.84012334395744 done
#> lambda = 2.96004508009247 done
#> lambda = 3.08503040715507 done
#> lambda = 3.21529313086478 done
#> lambda = 3.35105608470152 done
#> lambda = 3.49255151109498 done
#> lambda = 3.64002145870927 done
#> lambda = 3.79371819650269 done
#> lambda = 3.9539046452707 done
#> lambda = 4.12085482741052 done
#> lambda = 4.29485433567656 done
#> lambda = 4.47620082172873 done
#> lambda = 4.66520450530918 done
#> lambda = 4.86218870491866 done
#> lambda = 5.0674903909002 done
#> lambda = 5.28146076187626 done
#> lambda = 5.50446584552545 done
#> lambda = 5.73688712472652 done
#> lambda = 5.97912219014072 done
#> lambda = 6.23158542034891 done
#> lambda = 6.49470869070685 done
#> lambda = 6.76894211213128 done
#> lambda = 7.05475480108065 done
#> lambda = 7.3526356820475 done
#> lambda = 7.66309432393553 done
#> lambda = 7.98666181175188 done
#> lambda = 8.32389165510583 done
#> lambda = 8.67536073506814 done
#> lambda = 9.04167029101067 done
#> lambda = 9.42344694911443 done
#> lambda = 9.8213437943055 done
#> lambda = 10.2360414874525 done
#> lambda = 10.6682494297369 done
#> lambda = 11.1187069761873 done
#> lambda = 11.5881847004551 done
#> lambda = 12.0774857129934 done
#> lambda = 12.587447034895 done
#> lambda = 13.11894102974 done
#> lambda = 13.6728768959011 done
#> lambda = 14.2502022218612 done
#> lambda = 14.8519046072019 done
#> lambda = 15.4790133520375 done
#> lambda = 16.1326012177839 done
#> lambda = 16.813786262274 done
#> lambda = 17.5237337523593 done
#> lambda = 18.2636581572701 done
#> lambda = 19.0348252261428 done
#> lambda = 19.8385541532693 done
#> lambda = 20.6762198347724 done
#> lambda = 21.5492552205668 done
#> lambda = 22.4591537656302 done
#> lambda = 23.4074719847766 done
#> lambda = 24.3958321153036 done
#> lambda = 25.4259248920664 done
#> lambda = 26.499512439728 done
#> lambda = 27.6184312871313 done
#> lambda = 28.7845955089513 done
#> lambda = 30 done
#> $optLambda
#> [1] 13.67288
#>
#> $optPrec
#> A 25 x 25 ridge precision matrix estimate with lambda = 13.672877
#> a b c d e f …
#> a 0.754982779 -0.002998480 -0.04858850 -0.002401803 0.013760663 0.001119408 …
#> b -0.002998480 0.805562115 -0.01556835 -0.006423874 -0.024053290 0.005685832 …
#> c -0.048588503 -0.015568354 0.75903211 -0.029985881 0.020314633 0.012666613 …
#> d -0.002401803 -0.006423874 -0.02998588 0.800435062 0.019768171 0.001763517 …
#> e 0.013760663 -0.024053290 0.02031463 0.019768171 0.766978241 -0.005623105 …
#> f 0.001119408 0.005685832 0.01266661 0.001763517 -0.005623105 0.810330655 …
#> … 19 more rows and 19 more columns
#>
OPT$optLambda # Optimal penalty
#> [1] 13.67288
OPT$optPrec # Regularized precision under optimal penalty
#> A 25 x 25 ridge precision matrix estimate with lambda = 13.672877
#> a b c d e f …
#> a 0.754982779 -0.002998480 -0.04858850 -0.002401803 0.013760663 0.001119408 …
#> b -0.002998480 0.805562115 -0.01556835 -0.006423874 -0.024053290 0.005685832 …
#> c -0.048588503 -0.015568354 0.75903211 -0.029985881 0.020314633 0.012666613 …
#> d -0.002401803 -0.006423874 -0.02998588 0.800435062 0.019768171 0.001763517 …
#> e 0.013760663 -0.024053290 0.02031463 0.019768171 0.766978241 -0.005623105 …
#> f 0.001119408 0.005685832 0.01266661 0.001763517 -0.005623105 0.810330655 …
#> … 19 more rows and 19 more columns
## Another example with standardized data
X <- scale(X, center = TRUE, scale = TRUE)
OPT <- optPenalty.kCV(X, lambdaMin = .5, lambdaMax = 30, step = 100, cor = TRUE,
target = default.target(covML(X, cor = TRUE))); OPT
#> Perform input checks...
#> Calculating cross-validated negative log-likelihoods...
#> lambda = 0.5 done
#> lambda = 0.521112064796442 done
#> lambda = 0.543115568152822 done
#> lambda = 0.56604815028642 done
#> lambda = 0.589949040739926 done
#> lambda = 0.614859125489326 done
#> lambda = 0.640821016885354 done
#> lambda = 0.667879126548165 done
#> lambda = 0.696079741339917 done
#> lambda = 0.725471102545235 done
#> lambda = 0.756103488394997 done
#> lambda = 0.788029300074619 done
#> lambda = 0.821303151363959 done
#> lambda = 0.855981962062195 done
#> lambda = 0.89212505535748 done
#> lambda = 0.929794259307953 done
#> lambda = 0.969054012607691 done
#> lambda = 1.00997147481854 done
#> lambda = 1.0526166412564 done
#> lambda = 1.09706246272843 done
#> lambda = 1.14338497032617 done
#> lambda = 1.19166340548777 done
#> lambda = 1.24198035555219 done
#> lambda = 1.29442189503684 done
#> lambda = 1.34907773288074 done
#> lambda = 1.40604136590477 done
#> lambda = 1.46541023875169 done
#> lambda = 1.52728591057948 done
#> lambda = 1.59177422879317 done
#> lambda = 1.65898551011235 done
#> lambda = 1.72903472928405 done
#> lambda = 1.80204171576394 done
#> lambda = 1.87813135870213 done
#> lambda = 1.95743382058443 done
#> lambda = 2.04008475989428 done
#> lambda = 2.12622556317653 done
#> lambda = 2.21600358689979 done
#> lambda = 2.30957240953135 done
#> lambda = 2.40709209425555 done
#> lambda = 2.5087294627854 done
#> lambda = 2.61465838073554 done
#> lambda = 2.72506005504483 done
#> lambda = 2.84012334395744 done
#> lambda = 2.96004508009247 done
#> lambda = 3.08503040715507 done
#> lambda = 3.21529313086478 done
#> lambda = 3.35105608470152 done
#> lambda = 3.49255151109498 done
#> lambda = 3.64002145870927 done
#> lambda = 3.79371819650269 done
#> lambda = 3.9539046452707 done
#> lambda = 4.12085482741052 done
#> lambda = 4.29485433567656 done
#> lambda = 4.47620082172873 done
#> lambda = 4.66520450530918 done
#> lambda = 4.86218870491866 done
#> lambda = 5.0674903909002 done
#> lambda = 5.28146076187626 done
#> lambda = 5.50446584552545 done
#> lambda = 5.73688712472652 done
#> lambda = 5.97912219014072 done
#> lambda = 6.23158542034891 done
#> lambda = 6.49470869070685 done
#> lambda = 6.76894211213128 done
#> lambda = 7.05475480108065 done
#> lambda = 7.3526356820475 done
#> lambda = 7.66309432393553 done
#> lambda = 7.98666181175188 done
#> lambda = 8.32389165510583 done
#> lambda = 8.67536073506814 done
#> lambda = 9.04167029101067 done
#> lambda = 9.42344694911443 done
#> lambda = 9.8213437943055 done
#> lambda = 10.2360414874525 done
#> lambda = 10.6682494297369 done
#> lambda = 11.1187069761873 done
#> lambda = 11.5881847004551 done
#> lambda = 12.0774857129934 done
#> lambda = 12.587447034895 done
#> lambda = 13.11894102974 done
#> lambda = 13.6728768959011 done
#> lambda = 14.2502022218612 done
#> lambda = 14.8519046072019 done
#> lambda = 15.4790133520375 done
#> lambda = 16.1326012177839 done
#> lambda = 16.813786262274 done
#> lambda = 17.5237337523593 done
#> lambda = 18.2636581572701 done
#> lambda = 19.0348252261428 done
#> lambda = 19.8385541532693 done
#> lambda = 20.6762198347724 done
#> lambda = 21.5492552205668 done
#> lambda = 22.4591537656302 done
#> lambda = 23.4074719847766 done
#> lambda = 24.3958321153036 done
#> lambda = 25.4259248920664 done
#> lambda = 26.499512439728 done
#> lambda = 27.6184312871313 done
#> lambda = 28.7845955089513 done
#> lambda = 30 done
#> $optLambda
#> [1] 1.729035
#>
#> $optPrec
#> A 25 x 25 ridge precision matrix estimate with lambda = 1.729035
#> a b c d e f …
#> a 0.870558731 0.005799602 -0.10887022 0.020620932 0.02747321 -0.030649123 …
#> b 0.005799602 0.858543312 -0.05826257 -0.060673303 -0.10951470 0.013668617 …
#> c -0.108870222 -0.058262566 0.92295982 -0.108621345 0.04811302 0.035537758 …
#> d 0.020620932 -0.060673303 -0.10862134 0.870451897 0.05721630 -0.008132546 …
#> e 0.027473206 -0.109514703 0.04811302 0.057216296 0.90403666 -0.041437493 …
#> f -0.030649123 0.013668617 0.03553776 -0.008132546 -0.04143749 0.861873688 …
#> … 19 more rows and 19 more columns
#>
OPT$optLambda # Optimal penalty
#> [1] 1.729035
OPT$optPrec # Regularized precision under optimal penalty
#> A 25 x 25 ridge precision matrix estimate with lambda = 1.729035
#> a b c d e f …
#> a 0.870558731 0.005799602 -0.10887022 0.020620932 0.02747321 -0.030649123 …
#> b 0.005799602 0.858543312 -0.05826257 -0.060673303 -0.10951470 0.013668617 …
#> c -0.108870222 -0.058262566 0.92295982 -0.108621345 0.04811302 0.035537758 …
#> d 0.020620932 -0.060673303 -0.10862134 0.870451897 0.05721630 -0.008132546 …
#> e 0.027473206 -0.109514703 0.04811302 0.057216296 0.90403666 -0.041437493 …
#> f -0.030649123 0.013668617 0.03553776 -0.008132546 -0.04143749 0.861873688 …
#> … 19 more rows and 19 more columns
## Another example using K = 5
OPT <- optPenalty.kCV(X, lambdaMin = .5, lambdaMax = 30, step = 100, fold = 5); OPT
#> Perform input checks...
#> Calculating cross-validated negative log-likelihoods...
#> lambda = 0.5 done
#> lambda = 0.521112064796442 done
#> lambda = 0.543115568152822 done
#> lambda = 0.56604815028642 done
#> lambda = 0.589949040739926 done
#> lambda = 0.614859125489326 done
#> lambda = 0.640821016885354 done
#> lambda = 0.667879126548165 done
#> lambda = 0.696079741339917 done
#> lambda = 0.725471102545235 done
#> lambda = 0.756103488394997 done
#> lambda = 0.788029300074619 done
#> lambda = 0.821303151363959 done
#> lambda = 0.855981962062195 done
#> lambda = 0.89212505535748 done
#> lambda = 0.929794259307953 done
#> lambda = 0.969054012607691 done
#> lambda = 1.00997147481854 done
#> lambda = 1.0526166412564 done
#> lambda = 1.09706246272843 done
#> lambda = 1.14338497032617 done
#> lambda = 1.19166340548777 done
#> lambda = 1.24198035555219 done
#> lambda = 1.29442189503684 done
#> lambda = 1.34907773288074 done
#> lambda = 1.40604136590477 done
#> lambda = 1.46541023875169 done
#> lambda = 1.52728591057948 done
#> lambda = 1.59177422879317 done
#> lambda = 1.65898551011235 done
#> lambda = 1.72903472928405 done
#> lambda = 1.80204171576394 done
#> lambda = 1.87813135870213 done
#> lambda = 1.95743382058443 done
#> lambda = 2.04008475989428 done
#> lambda = 2.12622556317653 done
#> lambda = 2.21600358689979 done
#> lambda = 2.30957240953135 done
#> lambda = 2.40709209425555 done
#> lambda = 2.5087294627854 done
#> lambda = 2.61465838073554 done
#> lambda = 2.72506005504483 done
#> lambda = 2.84012334395744 done
#> lambda = 2.96004508009247 done
#> lambda = 3.08503040715507 done
#> lambda = 3.21529313086478 done
#> lambda = 3.35105608470152 done
#> lambda = 3.49255151109498 done
#> lambda = 3.64002145870927 done
#> lambda = 3.79371819650269 done
#> lambda = 3.9539046452707 done
#> lambda = 4.12085482741052 done
#> lambda = 4.29485433567656 done
#> lambda = 4.47620082172873 done
#> lambda = 4.66520450530918 done
#> lambda = 4.86218870491866 done
#> lambda = 5.0674903909002 done
#> lambda = 5.28146076187626 done
#> lambda = 5.50446584552545 done
#> lambda = 5.73688712472652 done
#> lambda = 5.97912219014072 done
#> lambda = 6.23158542034891 done
#> lambda = 6.49470869070685 done
#> lambda = 6.76894211213128 done
#> lambda = 7.05475480108065 done
#> lambda = 7.3526356820475 done
#> lambda = 7.66309432393553 done
#> lambda = 7.98666181175188 done
#> lambda = 8.32389165510583 done
#> lambda = 8.67536073506814 done
#> lambda = 9.04167029101067 done
#> lambda = 9.42344694911443 done
#> lambda = 9.8213437943055 done
#> lambda = 10.2360414874525 done
#> lambda = 10.6682494297369 done
#> lambda = 11.1187069761873 done
#> lambda = 11.5881847004551 done
#> lambda = 12.0774857129934 done
#> lambda = 12.587447034895 done
#> lambda = 13.11894102974 done
#> lambda = 13.6728768959011 done
#> lambda = 14.2502022218612 done
#> lambda = 14.8519046072019 done
#> lambda = 15.4790133520375 done
#> lambda = 16.1326012177839 done
#> lambda = 16.813786262274 done
#> lambda = 17.5237337523593 done
#> lambda = 18.2636581572701 done
#> lambda = 19.0348252261428 done
#> lambda = 19.8385541532693 done
#> lambda = 20.6762198347724 done
#> lambda = 21.5492552205668 done
#> lambda = 22.4591537656302 done
#> lambda = 23.4074719847766 done
#> lambda = 24.3958321153036 done
#> lambda = 25.4259248920664 done
#> lambda = 26.499512439728 done
#> lambda = 27.6184312871313 done
#> lambda = 28.7845955089513 done
#> lambda = 30 done
#> $optLambda
#> [1] 14.2502
#>
#> $optPrec
#> A 25 x 25 ridge precision matrix estimate with lambda = 14.250202
#> a b c d e f …
#> a 0.691889914 -0.003247911 -0.03251783 -0.002225053 0.009557761 0.001233066 …
#> b -0.003247911 0.691812523 -0.01670276 -0.010064672 -0.027723290 0.010704081 …
#> c -0.032517827 -0.016702764 0.69286442 -0.030070185 0.014655007 0.014722432 …
#> d -0.002225053 -0.010064672 -0.03007018 0.691818736 0.021084035 0.002809516 …
#> e 0.009557761 -0.027723290 0.01465501 0.021084035 0.692399543 -0.006744838 …
#> f 0.001233066 0.010704081 0.01472243 0.002809516 -0.006744838 0.691729200 …
#> … 19 more rows and 19 more columns
#>
OPT$optLambda # Optimal penalty
#> [1] 14.2502
OPT$optPrec # Regularized precision under optimal penalty
#> A 25 x 25 ridge precision matrix estimate with lambda = 14.250202
#> a b c d e f …
#> a 0.691889914 -0.003247911 -0.03251783 -0.002225053 0.009557761 0.001233066 …
#> b -0.003247911 0.691812523 -0.01670276 -0.010064672 -0.027723290 0.010704081 …
#> c -0.032517827 -0.016702764 0.69286442 -0.030070185 0.014655007 0.014722432 …
#> d -0.002225053 -0.010064672 -0.03007018 0.691818736 0.021084035 0.002809516 …
#> e 0.009557761 -0.027723290 0.01465501 0.021084035 0.692399543 -0.006744838 …
#> f 0.001233066 0.010704081 0.01472243 0.002809516 -0.006744838 0.691729200 …
#> … 19 more rows and 19 more columns