Calculates the moments of the sample covariance matrix. It assumes that the summands (the outer products of the samples' random data vector) that constitute the sample covariance matrix follow a Wishart-distribution with scale parameter \(\mathbf{\Sigma}\) and shape parameter \(\nu\). The latter is equal to the number of summands in the sample covariance estimate.

momentS(Sigma, shape, moment = 1)

Arguments

Sigma

Positive-definite matrix, the scale parameter \(\mathbf{\Sigma}\) of the Wishart distribution.

shape

A numeric, the shape parameter \(\nu\) of the Wishart distribution. Should exceed the number of variates (number of rows or columns of Sigma).

moment

An integer. Should be in the set \(\{-4, -3, -2, -1, 0, 1, 2, 3, 4\}\) (only those are explicitly specified in Lesac, Massam, 2004).

Value

The \(r\)-th moment of a sample covariance matrix: \(E(\mathbf{S}^r)\).

References

Lesac, G., Massam, H. (2004), "All invariant moments of the Wishart distribution", Scandinavian Journal of Statistics, 31(2), 295-318.

Author

Wessel N. van Wieringen.

Examples


# create scale parameter
Sigma <- matrix(c(1, 0.5, 0, 0.5, 1, 0, 0, 0, 1), byrow=TRUE, ncol=3)

# evaluate expectation of the square of a sample covariance matrix
# that is assumed to Wishart-distributed random variable with the
# above scale parameter Sigma and shape parameter equal to 40.
momentS(Sigma, 40, 2)
#>         [,1]    [,2] [,3]
#> [1,] 1.35625 1.06250  0.0
#> [2,] 1.06250 1.35625  0.0
#> [3,] 0.00000 0.00000  1.1