Directed Cyclic Mixed Graph Modeling for High-Dimensional Genomic Data Integration

Carel F.W. Peeters^{1*}, Wessel N. van Wieringen¹, and Mark A. van de Wiel¹

¹Dept. of Epidemiology & Biostatistics, VU University medical center, Amsterdam, the Netherlands *cf.peeters@vumc.nl

(1)

1. Background

Graphical Modeling

A class of probabilistic models utilizing graphs to express conditional (in)dependence relations between random variables. We consider graphs $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ consisting of a finite set \mathcal{V} of vertices and set of edges \mathcal{E} . The vertices of the graph correspond to a collection of random variables with probability distribution P. Graphical Modeling considers pairs (\mathcal{G}, P) .

Implications

The definition allows one to read all the conditional (in)dependencies off the DCMG. The DCMG tied to model (1) is a true graphical object. Thus, we can use the machinery of graphical modeling to solve the reverse engineering problem: for given data, can we find the DCMG?

4. Approach

Dominant Approaches in Networks for Genomic Data

- Undirected (Gaussian) graphical modeling
- Modeling precision matrices structured according to a DAG
- Consider 1 omics platform at a time

Desire

- Graphical modeling of a model-structured precision matrix
- Allow for reciprocal effect and feedback cycles
- Incorporate multiple genomic platforms: miRNA and mRNA

2. Model

Model

The SEM model we consider can be expressed as:

$$\mathbf{y}_i := \mathbf{B}\mathbf{y}_i + \mathbf{\Gamma}\mathbf{x}_i + \boldsymbol{\epsilon}_i, \quad i = 1, \dots, n.$$

Assumptions

1. Properly preprocessed data **2.** $\mathbf{y}_i \perp \mathbf{y}_{i'}, \forall i \neq i'$

3. $\epsilon_i \sim \mathcal{N}_p(\mathbf{0}, \Psi)$, with $\Psi \equiv \text{diag}[\psi_{11}, \dots, \psi_{pp}]$, and $\psi_{jj} > 0, \forall j$ 4. $\mathbf{x}_i \sim \mathcal{N}_q(\mathbf{0}, \mathbf{\Phi})$, with $\mathbf{\Phi} \succ 0$

Step 1: Regularization

• Let $\hat{\Sigma}$ denote the sample covariance matrix on \mathbf{y}_i and \mathbf{x}_i

• When $(p+q) \approx n$ or (p+q) > n, $\hat{\Sigma}$ is ill-behaved or singular and $\hat{\Omega} = \hat{\Sigma}^{-1}$ is undefined • The following (proper ℓ_2) penalized ML estimator is always well-behaved and p.d.:

$$\hat{\mathbf{\Omega}}(\lambda) = \left\{ \left[\lambda \mathbf{I}_{p+q} + \frac{1}{4} (\hat{\mathbf{\Sigma}} - \lambda \mathbf{T})^2 \right]^{1/2} + \frac{1}{2} (\hat{\mathbf{\Sigma}} - \lambda \mathbf{T}) \right\}^{-1}$$

where T denotes a p.d. symmetric target matrix and where the penalty $\lambda \in (0, \infty)$.

Step 2: Determine Support Precision Matrix

• Test for vanishing partial correlations to obtain $\hat{\Omega}(\lambda)^0$: A sparse representation of $\hat{\Omega}(\lambda)$ • Use local false discovery rate procedure

Step 3: Find Cyclic Directed Mixed Graph

• From $\hat{\Omega}(\lambda)^0$ we find $\hat{\Theta} = \{\hat{\mathbf{B}}, \hat{\Gamma}, \hat{\Psi}, \hat{\Phi}\}$ such that $\Omega(\hat{\Theta})$ is as close as possible to $\hat{\Omega}(\lambda)^0$. • Inverse variance lemma and identification proposition imply simple iterative algorithm

5. $\mathbf{x}_i \perp \boldsymbol{\epsilon}_{i'}, \forall i, i'$ 6. $(\mathbf{I}_p - \mathbf{B})$ is nonsingular and $\beta_{jj} = 0, \forall j$ 7. $\beta_{jj'} = \beta_{j'j}, \forall j \neq j'$ (expression reciprocation/feedback)

Natural Graphical Representation: Directed Cyclic Mixed Graph (DCMG)

3. The Model as a Graphical Object

Stretching the Idea of the Collider

 $\longleftrightarrow \longleftrightarrow$

5. Application: Glioblastoma Multiforme

- Aggressive malignant primary human brain tumor
- miRNA and mRNA data from The Cancer Genome Atlas
- Retained features implied in progression of glial cell to GBM (as defined by KEGG) • 350 samples, sample covariance poorly conditioned

Definition (m-separation)

Let v_l be an intermediate vertex on path $\rho_{ab} = (e_1, \ldots, e_r)$ from v_a to v_b (from a to b for short). A path ρ_{ab} from a to b in \mathcal{G} is pathwise m-separated by a set of vertices $C \subseteq \mathcal{V} \setminus \{a, b\}$ iff

1. $\{v_l | v_l \text{ is a non-collider on } \rho_{ab}\} \cap C \neq \emptyset$; or

2. $\exists \{v_l | v_l \text{ is a collider on } \rho_{ab} \} \equiv S \text{ s.t. } S \cap C = \emptyset \land de(S) \cap C = \emptyset.$

If C pathwise *m*-separates every path from a to b, then a to b are said to be *m*-separated given C. If C does not *m*-separate a from b, then a and b are said to be m-connected given C.

Some Results

- The model (1) is identified under our assumptions
- Denote the set of normal probability distributions that satisfy system (1) by \mathcal{P} . Let $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ be the associated DCMG. Then all $P \in \mathcal{P}$ are global \mathcal{G} -markov and the class \mathcal{P} is (given a Faithfulness assumption) Markov perfect w.r.t. \mathcal{G}

References

- Koster, J.T.A. (1996). Markov properties of nonrecursive causal models. Annals of Statistics, 24: 2148–2177 [1]
- [2] Peeters, C.F.W., Bilgrau, A.E., & van Wieringen, W.N. (2015). rags2ridges: Ridge estimation of precision matrices from high-dimensional data. R package 2.0. Available from: http://cran.r-project.org/web/packages=rags2ridges
- Richardson, T. (2003). Markov properties for acyclic directed mixed graphs. Scandinavian Journal of Statistics, 30: 145-[3] 157.
- van Wieringen, W.N., & Peeters, C.F.W. (2016). Ridge estimation of inverse covariance matrices from high-dimensional [4] data. Computational Statistics & Data Analysis, 103: 284-303.

Abbreviations: DAG = directed acyclic graph; DCMG = directed cyclic mixed graph; GBM = Glioblastoma Multiforme; KEGG = Kyoto Encyclopedia of Genes and Genomes; miRNA = micro RNA; mRNA = messenger RNA; RNA = ribonucleic acid; SEM = simultaneous equation model