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1. Background

Graphical Modeling

A class of probabilistic models utilizing graphs to express conditional (in)dependence rela-
tions between random variables. We consider graphs G = (V, £) consisting of a finite set V' of
vertices and set of edges £. The vertices of the graph correspond to a collection of random
variables with probability distribution P. Graphical Modeling considers pairs (G, P).

Dominant Approaches in Networks for Genomic Data

e Undirected (Gaussian) graphical modeling
e Modeling precision matrices structured according to a DAG
e Consider 1 omics platform at a time

Desire

e Graphical modeling of a model-structured precision matrix
e Allow for reciprocal effect and feedback cycles
e Incorporate multiple genomic platforms: miRNA and mRNA

2. Model

Model

The SEM model we consider can be expressed as:

y, =By, +I'x;+¢, 1=1...,n. (1)

Assumptions

1. Properly preprocessed data

2.y; WL yy, Vidti

3.€; ~ Np(0, W), with ¥ = diag[i11, ..., ¥y, and ¢;; > 0,V
4.x; ~ Ny(0, ®), with & = 0

5.x; 1L €, Vi,

6. (I, — B) is nonsingular and 3;; = 0,V

7.8y = By, Vj#j (expression reciprocation/feedback)

Natural Graphical Representation: Directed Cyclic Mixed Graph (DCMGQG)
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3. The Model as a Graphical Object

Stretching the Idea of the Collider
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Definition (m-separation)

Let v; be an intermediate vertex on path p;, = (e1,...,er) from v, 10 vy, (from a to b for short).
A path p,;, from a to b in G is pathwise m-separated by a set of vertices C' C V \ {a, b} iff

1. {v;|v; is a non-collider on p,,} N C # 0; or

2. 3{v;|v; is a collideron p,} =S st. SNC =0 A de(S)NC = 0.

It C' pathwise m-separates every path from a to b, then « to b are said to be m-separated
given C. If C' does not m-separate a from b, then a and b are said to be m-connected given

C.

Some Results

e The model (1) is identified under our assumptions

e Denote the set of normal probability distributions that satisfy system (1) by P. LetG = (V, €)
be the associated DCMG. Then all P € P are global G-markov and the class P is (given a
Faithfulness assumption) Markov perfect w.r.t. G
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Implications

The definition allows one to read all the conditional (in)dependencies off the DCMG. The
DCMG tied to model (1) is a true graphical object. Thus, we can use the machinery of
graphical modeling to solve the reverse engineering problem: for given data, can we find the
DCMG?

4. Approach

Step 1: Regularization

e Let 32 denote the sample covariance matrix on y; and x;
e When (p +q) ~ nor (p+q) > n, X is ill-behaved or singular and = 3! is undefined
e The following (proper /) penalized ML estimator is always well-behaved and p.d.:
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where T denotes a p.d. symmetric target matrix and where the penalty A € (0, o).

Step 2: Determine Support Precision Matrix

e Test for vanishing partial correlations to obtain (\)?: A sparse representation of Q(\)
e Use local false discovery rate procedure
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Step 3: Find Cyclic Directed Mixed Graph

e From Q(\)! we find © = {B,T', ¥, &} such that Q(©) is as close as possible to ()"
e Inverse variance lemma and identification proposition imply simple iterative algorithm
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5. Application: Glioblastoma Multiforme

e Aggressive malignant primary human brain tumor

e MiIRNA and mRNA data from The Cancer Genome Atlas

e Retained features implied in progression of glial cell to GBM (as defined by KEGG)
e 350 samples, sample covariance poorly conditioned
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Abbreviations: DAG = directed acyclic graph; DCMG = directed cyclic mixed graph; GBM = Glioblastoma Multiforme; KEGG = Kyoto

Encyclopedia of Genes and Genomes; miRNA = micro RNA; mRNA = messenger RNA; RNA = ribonucleic acid; SEM = simultaneous

equation model



