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1. Background

Graphical Modeling

A class of probabilistic models utilizing graphs to express conditional (in)dependence rela-
tions between random variables. We consider graphs G = (V , E) consisting of a finite set V of
vertices and set of edges E . The vertices of the graph correspond to a collection of random
variables with probability distribution P . Graphical Modeling considers pairs (G, P ).

Dominant Approaches in Networks for Genomic Data

•Undirected (Gaussian) graphical modeling
•Modeling precision matrices structured according to a DAG
•Consider 1 omics platform at a time

Desire

•Graphical modeling of a model-structured precision matrix
• Allow for reciprocal effect and feedback cycles
• Incorporate multiple genomic platforms: miRNA and mRNA

2. Model

Model

The SEM model we consider can be expressed as:

yi := Byi + Γxi + εi, i = 1, . . . , n. (1)

Assumptions

1. Properly preprocessed data
2. yi ⊥⊥ yi′, ∀i 6= i′

3. εi ∼ Np(0,Ψ), with Ψ ≡ diag[ψ11, . . . , ψpp], and ψjj > 0,∀j
4. xi ∼ Nq(0,Φ), with Φ � 0

5. xi ⊥⊥ εi′,∀i, i′

6. (Ip −B) is nonsingular and βjj = 0,∀j
7. βjj′ = βj′j, ∀ j 6= j′ (expression reciprocation/feedback)

Natural Graphical Representation: Directed Cyclic Mixed Graph (DCMG)

3. The Model as a Graphical Object

Stretching the Idea of the Collider
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Definition (m-separation)

Let vl be an intermediate vertex on path ρab = (e1, . . . , er) from va to vb (from a to b for short).
A path ρab from a to b in G is pathwise m-separated by a set of vertices C ⊆ V \ {a, b} iff
1. {vl|vl is a non-collider on ρab} ∩ C 6= ∅; or
2. ∃{vl|vl is a collider on ρab} ≡ S s.t. S ∩ C = ∅ ∧ de(S) ∩ C = ∅.
If C pathwise m-separates every path from a to b, then a to b are said to be m-separated
given C. If C does not m-separate a from b, then a and b are said to be m-connected given
C.

Some Results

• The model (1) is identified under our assumptions
•Denote the set of normal probability distributions that satisfy system (1) by P. Let G = (V , E)

be the associated DCMG. Then all P ∈ P are global G-markov and the class P is (given a
Faithfulness assumption) Markov perfect w.r.t. G

Implications

The definition allows one to read all the conditional (in)dependencies off the DCMG. The
DCMG tied to model (1) is a true graphical object. Thus, we can use the machinery of
graphical modeling to solve the reverse engineering problem: for given data, can we find the
DCMG?

4. Approach

Step 1: Regularization

• Let Σ̂ denote the sample covariance matrix on yi and xi
•When (p + q) ≈ n or (p + q) > n, Σ̂ is ill-behaved or singular and Ω̂ = Σ̂−1 is undefined
• The following (proper `2) penalized ML estimator is always well-behaved and p.d.:

Ω̂(λ) =

{[
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1

4
(Σ̂− λT)2

]1/2
+
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2
(Σ̂− λT)

}−1
,

where T denotes a p.d. symmetric target matrix and where the penalty λ ∈ (0,∞).

Step 2: Determine Support Precision Matrix

• Test for vanishing partial correlations to obtain Ω̂(λ)0: A sparse representation of Ω̂(λ)

•Use local false discovery rate procedure
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Step 3: Find Cyclic Directed Mixed Graph

• From Ω̂(λ)0 we find Θ̂ = {B̂, Γ̂, Ψ̂, Φ̂} such that Ω(Θ̂) is as close as possible to Ω̂(λ)0

• Inverse variance lemma and identification proposition imply simple iterative algorithm

5. Application: Glioblastoma Multiforme
• Aggressive malignant primary human brain tumor
•miRNA and mRNA data from The Cancer Genome Atlas
•Retained features implied in progression of glial cell to GBM (as defined by KEGG)
• 350 samples, sample covariance poorly conditioned
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