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SM I: Proofs of and related results

SM Ia: Proposition 1

Remark:
In this Supplementary Material Proposition 1 of the main text is renamed to Proposition S2, due
to the preliminary results (lemma’s, propositions and corollaries) that are presented here and are
omitted in the main text.

Lemma S1.

Assume T−1
r 6= S 6= Tℓw. Then:

i) ‖Σ̂ℓw(ν)− S‖2F is strictly increasing in ν, and

ii) ‖Σ̂r(λ)− S‖2F is strictly increasing in λ.

Proof. For both lemma entries the proof proceeds by showing that the derivatives of the squared
norm with respect to λ and ν are strictly positive.

i) Substitute the expression for the estimator in the squared Frobenius norm to arrive at:

‖Σ̂ℓw(ν) − S‖2F = ‖(1− ν)S+ νTℓw − S‖2F = ν2‖S−Tℓw‖
2
F .

Clearly, its derivative with respect to ν is strictly positive (provided S 6= Tℓw).
ii) Write the squared Frobenius norm as a trace and expand its argument:

‖Σ̂r(λ)− S‖2F = tr[Σ̂2
r(λ)]− 2tr[Σ̂r(λ)S] + tr(S2).

The derivative w.r.t. λ of the right-hand side is:

d

dλ
‖Σ̂r(λ) − S‖2F = 2tr

{[
Σ̂r(λ) − S

] d
dλ

Σ̂r(λ)
}
, (1)

where:

d

dλ
Σ̂(λ) = − 1

2Tr +
1
2 [λIpp +

1
4 (S− λTr)

2]−1/2[Ipp +
1
2 (λTr − S)Tr]

= 1
2 [λIpp +

1
4 (S− λTr)

2]−1/2Σ̂r(λ)[Σ̂
−1
r (λ) −Tr].

Substitute the latter into Equation (1) and use that Σ̂r(λ) satisfies the estimating equation,

i.e. Σ̂r(λ) − S = λ[Σ̂−1
r (λ)−Tr], to arrive at:

d

dλ
‖Σ̂r(λ) − S‖2F = λtr

{
[λIpp +

1
4 (S− λTr)

2]−1/2Σ̂r(λ)[Σ̂
−1
r (λ)−Tr]

2
}
.

This trace is positive, whenever each term in the trace is positive definite. Only the last term,
[Σ̂−1

r (λ) − Tr]
2, may be semi-positive definite, but only if Σ̂−1

r (λ) = Tr. This occurs either
when S = T−1

r (which is excluded by the conditions of the lemma) or in the limit λ → ∞.

An analogous lemma could be formulated stating that ‖Σ̂ℓw(ν) − Tℓw‖2F and ‖Σ̂r(λ) − T−1
r ‖2F

are strictly decreasing in ν and λ, respectively.

Corollary S1.

For ν ∈ [0, 1) and λ ∈ [0,∞):

i) ‖Σ̂ℓw(ν)− S‖2F < ‖Tℓw − S‖2F .

ii) ‖Σ̂r(λ)− S‖2F < ‖T−1
r − S‖2F .
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Proof. This is immediate from Lemma S1 when taking the limits of λ to 0 and ∞ on the left-
and right-hand side, respectively. Similarly, for the second part, take the limit of ν to 0 and 1,
respectively.

Corollary S1 thus states that the fit of the shrinkage covariance estimators will always improve – in
terms of the Frobenius loss – in comparison to its target. In the context of updating the target is
the current estimate of the covariance matrix and Corollary S1 implies the next corollary.

Corollary S2.

Consider the sequence of sample covariance matrices {Sk}∞k=1 formed from different draws of the

same N (0p,Σ)-law and let {Σ̂ℓw,k(νk)}∞k=1 and {Σ̂r,k(λk)}∞k=1 be the sequences of corresponding
updated Ledoit-Wolf and ridge covariance estimators, respectively. Then, given current covariance
estimates Σ̂ℓw,k(νk) and Σ̂r,k(λk), the updated ones improve the fit:

i) ‖Σ̂ℓw,k+1(νk+1)− Sk+1‖2F < ‖Σ̂ℓw,k(νk)− Sk+1‖2F ,

ii) ‖Σ̂r,k+1(λk+1)− Sk+1‖2F < ‖Σ̂r,k(λk)− Sk+1‖2F ,
for all νk+1 ∈ [0, 1) and λk+1 ∈ [0,∞).

That is, when new data arrives the fit of the target to the sample covariance matrix formed from the
new data is – in accordance with Corollary S2 – outperformed by the updated shrinkage covariance
estimators using the newly formed sample covariance matrix and the current target. As the sample
covariance matrix is an unbiased of the covariance matrix, one may hope that the updated shrinkage
covariance estimators will – after enough updates – become unbiased estimators of the covariance
matrix, irrespective of the initial target matrix. This is first explored in the following intermezzo.

+—————————————————————————————————————————–+
+ Intermezzo
+—————————————————————————————————————————–+

To shape intuition the behavior of the updated shrinkage covariance estimators is studied in the
unrealistic case – which will happen with negligible probability – where the sample covariance ma-
trix calculated from each newly arrived data set is the same, i.e. S1 = S2 = . . . = Sk = . . .. This
assumption removes the between-data-set variation and greatly simplifies the study into the effect
of updating on the quality of the estimators.

Corollary S3.

Assume Sk = S for all k ∈ N. Then, for k ∈ N, νk ∈ [0, 1) and λk ∈ [0,∞):

i) ‖Σ̂ℓw,k+1(νk+1)− S‖2F < ‖Σ̂ℓw,k(νk)− S‖2F ,

ii) ‖Σ̂r,k+1(λk+1)− S‖2F < ‖Σ̂r,k(λk)− S‖2F .

Proof. In Corollary S1 note that Tℓw,k+1 = Σ̂k(νk) and T−1
r,k+1 = Σ̂k(λk).

Corollary S3 says that, under the assumption of Sk = S for all k, that the losses of subsequent
updated shrinkage estimators forms a strict monotonically decreasing sequence.

The strict monotonicity of the loss sequences suggests it has a limit, confer Proposition S1.

Proposition S1.

Assume Sk = S for all k ∈ N. Then, for k ∈ N, νk ∈ [0, 1) and λk ∈ R≥0:

i) limk→∞ Σ̂ℓw,k(νk) = S,

ii) limk→∞ Σ̂r,k(λk) = S.

Proof. Corollary S3 implies that the sequences
{
‖Σ̂ℓw,k(νk)− S‖2F

}∞

k=1
and

{
‖Σ̂r,k(λk)− S‖2F

}∞

k=1
are strict monotone decreasing. As the sequences are also bounded, they must converge. Rests to
find their limits:
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i) Due to the convergence, we have Σ̂ℓw,k(νk) = Σ̂ℓw,k+1(νk+1) as k → ∞. In this limit:

Σ̂ℓw,k+1(νk+1) = (1− νk+1)S+ νk+1Tℓw,k+1 = (1− νk+1)S+ νk+1Σ̂ℓw,k(νk)

= (1− νk+1)S+ νk+1Σ̂ℓw,k+1(νk+1),

which implies Σ̂ℓw,k+1(νk+1) = S.

ii) Due to the convergence, we have Σ̂r,k(λk) = Σ̂r,k+1(λk+1) as k → ∞. Substitute this limit in
the estimating equation:

Σ̂r,k(λk)− S = λk[Σ̂
−1
r,k+1(λk+1)−Tr,k+1] = λk[Σ̂

−1
r,k+1(λk+1)−Tr,k+1]

= λk[Σ̂
−1
r,k+1(λk+1)− Σ̂−1

r,k(λk)] = λk[Σ̂
−1
r,k+1(λk+1)− Σ̂−1

r,k+1(λk+1)] = 0pp,

from which the claim follows.

Proposition S1 tells us that construction of the target matrix T from S followed by repeated re-
estimation of the covariance matrix with the previous estimate used as target eventually returns the
original input data S. We, unlike Baron Munchhausen, cannot pull ourselves from the swamp by
our own hair.

Nonetheless, as the updated shrinkage covariance estimators converge to the sample covariance
matrix, they are asymptotically unbiased estimators.

Corollary S4.

Assume Sk = S for all k ∈ N. Then:
i) limk→∞ E[Σ̂ℓw,k(νk)] = Σ.

ii) limk→∞ E[Σ̂r,k(λk)] = Σ.

Proof. In Proposition S1 take the expectation on both sides.

+—————————————————————————————————————————–+
+ End of intermezzo
+—————————————————————————————————————————–+

Hence, without between-data-set variation, updating produces asymptotically unbiased estimator,
irrespective of the choice of the initial target T0. We now return to the case of data set specific
sample covariance matrices, letting between-data-set variation back-in and study the asymptotic
behavior of the updated shrinkage covariance estimators.

First, as a prerequisite, a result on the element-wise deviation of the sample covariance matrix
from the population matrix is quoted from Kolar and Liu (2012) .

Lemma S2. (Lemma 12 in the Supplementary Material of Kolar and Liu, 2012)
Let Y ∈ R

n×p be a random matrix whose rows are independent and identically distributed as
N (0p,Σ). Denote by R the correlation matrix associated with Σ. The sample covariance matrix S is
defined as S = 1

nY
⊤Y. Let ξj,j′ = max{[1−(R)j,j′][(Σ)j,j(Σ)j′,j′ ]

1/2, [1+(R)j,j′ ][(Σ)j,j(Σ)j′,j′ ]
1/2}.

Then, for all t ∈ [0, ξj,j′/2):

P (|(S)j,j′ − (Σ)j,j′ | ≥ t) ≤ 4 exp[−3nt2/(16ξ2j,j′)].

With little extra work, the following corollary follows from this lemma.

Corollary S5.

Let S1 and S2 be sample covariance matrices obtained from samples with size nk and nk+1, respec-
tively, drawn from N (0p,Σ). Denote by R the correlation matrix associated with Σ. Define ξj,j′ =
max{[1− (R)j,j′ ][(Σ)j,j(Σ)j′,j′ ]

1/2, [1 + (R)j,j′ ][(Σ)j,j(Σ)j′,j′ ]
1/2}. Then, for all t ∈ [0, 1

2p
2ξ2j,j′):

P (‖S1 −Σ‖2F + ‖S2 −Σ‖2F ≥ t)

≤ min
{
1, 4

p∑

j=1,j′=j

{
exp[−3nkt

2/(16ξ2j,j′)] + exp[−3nk+1t
2/(16ξ2j,j′)]

}}
.
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In particular, when ξ is defined as maxj,j′ ξj,j′ , for all t ∈ [0, 1
2p

2ξ2):

P (‖S1 −Σ‖2F + ‖S2 −Σ‖2F ≥ t)

≤ min
{
1, 2

{
exp[log(p2 + p)− 3nkt

2/(16ξ2)]

+ exp[log(p2 + p)− 3nk+1t
2/(16ξ2)]

}}
.

Proof. Write the probability as one minus that of its complement:

P (‖S1 −Σ‖2F + ‖S2 −Σ‖2F ≥ t) = 1− P (‖S1 −Σ‖2F + ‖S2 −Σ‖2F < t). (2)

The probability of its complement is bounded from below as follows:

P
(
‖Sk −Σ‖2F + ‖Sk+1 −Σ‖2F < t

)

≥ P
(
‖Sk −Σ‖2F < 1

2 t, ‖Sk+1 −Σ‖2F < 1
2 t)

)

≥ P
(
|(Sk)j,j′ − (Σ)j,j′ | < 2−1/2p−1t1/2 for all j = 1, . . . , p, j′ = j, . . . , p,

|(Sk+1)j,j′ − (Σ)j,j′ | < 2−1/2p−1t1/2 for all j = 1, . . . , p, j′ = j, . . . , p,
)
,

where the j′ runs from j to p in order to exclude duplicate events stemming from the symmetry
of Sk+1 and Σ, which do not add to the probability. Write t̃ = 2−1/2p−1t1/2 and apply Fréchet’s
inequality to the probability of the conjunction of 2× 1

2 (p
2+p) events in the last line of the preceding

display:

(continued)

≥ max
{
0,
∑p

j=1,j′=j
P
(
|(Sk)j,j′ − (Σ)j,j′ | < t̃

)

+
∑p

j=1,j′=j
P
(
|(Sk+1)j,j′ − (Σ)j,j′ | < t̃

)
− [2 1

2 (p
2 + p)− 1]

}

= max
{
0, 1− (p2 + p) +

p∑

j=1,j′=j

P
(
|(Sk)j,j′ − (Σ)j,j′ | < t̃

)

+
∑p

j=1,j′=j
P
(
|(Sk+1)j,j′ − (Σ)j,j′ | < t̃

)}

= max
{
0, 1− (p2 + p) +

∑p

j=1,j′=j
[1− P

(
|(Sk)j,j′ − (Σ)j,j′ | ≥ t̃

)
]

+
∑p

j=1,j′=j
[1− P

(
|(Sk+1)j,j′ − (Σ)j,j′ | ≥ t̃

)
]
}

= max
{
0, 1−

∑p

j=1,j′=j
[P

(
|(Sk)j,j′ − (Σ)j,j′ | ≥ t̃

)
+ P

(
|(Sk+1)j,j′ − (Σ)j,j′ | ≥ t̃

)
]
}

≥ max
{
0, 1−

∑p

j=1,j′=j
4{exp[−3nk t̃

2/(16ξ2j,j′)] + exp[−3nk+1t̃
2/(16ξ2j,j′)]}

}

in which Lemma S2 have been used and where t̃ ∈ [0, 12ξj,j′ ). Substitute the obtained bound in
Display (2):

P (‖S1 −Σ‖2F + ‖S2 −Σ‖2F ≥ t)

= 1− P (‖S1 −Σ‖2F + ‖S2 −Σ‖2F < t)

≤ 1−max
{
0, 1−

p∑

j=1,j′=j

4{exp[−3nk t̃
2/(16ξ2j,j′)] + exp[−3nk+1t̃

2/(16ξ2j,j′)]}
}

= min
{
1,

p∑

j=1,j′=j

4{exp[−3nk t̃
2/(16ξ2j,j′)] + exp[−3nk+1t̃

2/(16ξ2j,j′)]}
}
,

which is as claimed. To arrive at the second inequality stated in the corollary, replace all ξj,j′

by ξ, note that exp(−c/ξj,j′) ≤ exp(−c/ξ) as ξ ≥ ξj,j′ , sum over j and j′, and, finally, write
p(p+ 1) = exp[log(p2 + p)].
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Proposition S2. (Fluctuation probability I, ridge)
Let Sk and Sk+1 be sample covariance matrices obtained from samples with size nk and nk+1,

respectively, both drawn from N (0p,Σ) and let Σ̂r,k(λk) and Σ̂r,k+1(λk+1) be the corresponding
updated ridge covariance matrix estimators. Denote by R the correlation matrix associated with Σ.
Define ξj,j′ = max{[1−(R)j,j′ ][(Σ)j,j(Σ)j′,j′ ]

1/2, [1+(R)j,j′ ][(Σ)j,j(Σ)j′,j′ ]
1/2} and ξ = maxj,j′ ξj,j′ .

Then, given the current covariance estimate Σ̂r,k(λk) with λk > 0, for every λk+1 ∈ (0,∞), there
exists a δ(λk+1) > 0 for which:

P (‖Σ̂r,k+1(λk+1)− Sk+1‖
2
F < ‖Σ̂r,k(λk)− Sk‖

2
F )

≥ 1−min
{
1, 2 exp[log(p2 + p)− 3nkt

2/(16ξ2)] + 2 exp[log(p2 + p)− 3nk+1t
2/(16ξ2)]

}
.

with t = min{δ(λk+1),
1
2p

2ξ2}.

Proof. From Corollary S2 it follows that for any λk+1 ∈ (0,∞) there exists a δ(λk+1) > 0 such that:

‖Σ̂r,k+1(λk+1)− Sk+1‖
2
F + δ(λk+1) = ‖Σ̂r,k(λk)− Sk+1‖

2
F

≤ ‖Σ̂r,k(λk)− Sk‖
2
F + ‖Sk − Sk+1‖

2
F

≤ ‖Σ̂r,k(λk)− Sk‖
2
F + ‖Sk −Σ‖2F + ‖Sk+1 −Σ‖2F ,

where the triangle inequality has been applied repeatedly. Hence, if ‖Sk −Σ‖2F + ‖Sk+1 −Σ‖2F <

δ(λk+1), then ‖Σ̂r,k+1(λk+1)− Sk+1‖2F < ‖Σ̂r,k(λk)− Sk‖2F . The probability of this happening can
be bounded from below as:

P
(
‖Sk −Σ‖2F + ‖Sk+1 −Σ‖2F < δ(λk+1)

)

= 1− P
(
‖Sk −Σ‖2F + ‖Sk+1 −Σ‖2F ≥ δ(λk+1)

)

≥ 1−min
{
1, 2 exp[log(p2 + p)− 3nkt

2/(16ξ2)] + 2 exp[log(p2 + p)− 3nk+1t
2/(16ξ2)]

}

with t = min{δ(λk+1),
1
2p

2minj,j′ ξ
2
j,j′} (in which we have used Corollary S5).

Proposition S3. (Fluctuation probability I, Ledoit-Wolf)
Let Sk and Sk+1 be sample covariance matrices obtained from samples with size nk and nk+1,

respectively, both drawn from N (0p,Σ) and let Σ̂ℓw,k(νk) and Σ̂ℓw,k+1(νk+1) be the corresponding
updated Lediot-Wolf covariance matrix estimators. Denote by R the correlation matrix associated
with Σ. Define ξj,j′ = max{[1 − (R)j,j′ ][(Σ)j,j(Σ)j′,j′ ]

1/2, [1 + (R)j,j′ ][(Σ)j,j(Σ)j′,j′ ]
1/2} and ξ =

maxj,j′ ξj,j′ . Then, given the current covariance estimate ν̂ℓw,k(νk) with νk > 0, for every νk+1 ∈
(0, 1), there exists a δ(νk+1) > 0 for which:

P (‖Σ̂r,k+1(νk+1)− Sk+1‖
2
F < ‖Σ̂r,k(νk)− Sk‖

2
F )

≥ 1−min
{
1, 2 exp[log(p2 + p)− 3nkt

2/(16ξ2)] + 2 exp[log(p2 + p)− 3nk+1t
2/(16ξ2)]

}
.

with t = min{δ(νk+1),
1
2p

2ξ2}.

Proof. The proof is analogous to that of the ridge covariance estimator (cf. Proposition S2).

An important implication of Proposition S2 (and similarly of Proposition S3) is that, when nk
and nk+1 are sufficiently large, P (‖Σ̂r,k+1(λk+1) − Sk+1‖

2
F < ‖Σ̂r,k(λk) − Sk‖

2
F ) will be close to

one. Furthermore, the bound for this probability provided by e.g. Proposition S2 is crude (as the
inequalities used in its proof are not optimal) and could be improved upon.

SM Ib: Proposition 2

Remark:
In this Supplementary Material Proposition 2 of the main text is renamed to Proposition S4, due
to the preliminary results (lemma’s, propositions and corollaries) that are presented here and are
omitted in the main text.
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Definition S1. (Schatten matrix norm)
The Schatten matrix q-norm with q > 0 of a p×p-dimensional, symmetric matrix A, denoted ‖A‖q,
is:

‖A‖q =
[ p∑

j=1

|dj(A)|q
]1/q

,

where dj(A) is the j-th eigenvalue of A. In particular, ‖A‖∞ = limq→∞ ‖A‖q = maxj |dj(A)|,
which is called the spectral norm.

Lemma S3.

Assume T−1
r 6= S 6= Tℓw. Then, for q ∈ N:

i) ‖Σ̂ℓw(ν)− S‖q is strictly increasing in ν, and

ii) ‖Σ̂r(λ)− S‖q is strictly increasing in λ.
In particular, the monotony of the difference persists into the spectral norm (‖ · ‖∞).

Proof. Analogous to Lemma S1, the proof proceeds by showing that the derivative of the norm with
respect to λ is strictly positive.

i) Substitute the expression for the estimator in the Schatten q-norm and obtain:

‖Σ̂ℓw(λ)− S‖q = ‖(1− ν)S+ νTℓw − S‖q = ν2‖S−Tℓw‖q.

Clearly, its derivative with respect to ν is strictly positive (provided S 6= Tℓw), even in the
q → ∞ limit.

ii) Write the Schatten q-norm as a trace: ‖Σ̂r(λ)−S‖q =
[
tr
(
{[Σ̂2

r(λ)−S]2}q/2
)]1/q

(where [·]q is

written as {[·]2}q/2 is to emphasize and ensure the positiveness of the quantity under study).
The derivative w.r.t. λ of the right-hand side is:

d

dλ
‖Σ̂r(λ) − S‖q = (‖Σ̂r(λ) − S‖q)

1−q

× tr
(
{
[
Σ̂r(λ) − S

]2
}q/2−1

[
Σ̂r(λ)− S

] d
dλ

Σ̂r(λ)
)
, (3)

where (as in Lemma S1):

d

dλ
Σ̂(λ) = 1

2 [λIpp +
1
4 (S− λTr)

2]−1/2Σ̂r(λ)[Σ̂
−1
r (λ) −Tr].

Substitute the latter into Equation (3) and use that Σ̂r(λ) satisfies the estimating equation,

i.e. Σ̂r(λ) − S = λ[Σ̂−1
r (λ)−Tr], to arrive at:

d

dλ
‖Σ̂r(λ) − S‖q = (‖Σ̂r(λ)− S‖q)

1−q

× λ−1tr
(
[λIpp +

1
4 (S− λTr)

2]−1/2Σ̂r(λ){[Σ̂r(λ) − S]2}q/2
)
.

This trace is positive, whenever each term in the trace is positive definite. Only the last
term, [Σ̂r(λ) − S]2, may be semi-positive definite, but only if Σ̂r(λ) = S. This occurs either
when S = T−1

r (which is excluded by the conditions of the lemma) or in the limit λ ↓ 0. By
l’Hopital’s rule the derivative is still positive in this limit.

Extra work is needed to prove the monotony of the spectral norm (q = ∞). Hereto we

study the sequence {‖Σ̂r(λ) − S‖q}∞q=0 and that of its derivative with respect to λ. Both

sequences are bounded as ‖Σ̂r(λ) − S‖q ≤ ‖Σ̂r(λ)‖q by Corollary 4.1.3 of Horn and Johnson
(1990). For the sequence of derivatives, we have (by the nonnegativity of the trace of a product
of two semi-positive definite matrices):

d

dλ
‖Σ̂r(λ) − S‖q ≤ λ−1dmax(‖Σ̂r(λ) − S‖q)

1−qtr
(
{[Σ̂r(λ) − S]2}q/2

)

= λ−1dmax‖Σ̂r(λ)− S‖q ≤ λ−1dmax‖Σ̂r(λ)‖q,
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where dmax is the largest eigenvalue of [λIpp +
1
4 (S− λTr)

2]−1/2Σ̂r(λ), which, by the positive

definiteness of this matrix product, is positive. The limit of {‖Σ̂r(λ)−S‖q}∞q=0 is the spectral
radius c.q. largest (in the absolute sense) eigenvalue as follows from Gelfand’s formula. By

the smoothness and boundedness of the map λ 7→ Σ̂r(λ)−S and the definition of the spectral
radius the point-wise limit is itself smooth. Due to their boundedness these sequences (of
continuous functions) converge point-wise. In particular, by Dini’s theorem Rudin (1964) they
converge uniformly on any compact interval of λ. We may now invoke Theorem 7.17 of Rudin
(1964) to conclude:

d

dλ
‖Σ̂r(λ)− S‖∞ = lim

q→∞

d

dλ
‖Σ̂r(λ) − S‖q ≥ λ−1dmin‖Σ̂r(λ) − S‖∞ > 0,

where the inequality originates from the same argument (here used in the opposite direction)
as that in the preceding display and dmin denotes the smallest eigenvalue of [λIpp + 1

4 (S −

λTr)
2]−1/2Σ̂r(λ), which, by the positive definiteness of this matrix product, is positive.

Towards a different bound, use to following corollary, which requires the definition of the sub-
Gaussian norm:

Definition S2. A random vector Y in R is sub-Gaussian if the one-dimensional marginals < Y,y >
are sub-Gaussian random variables for all y ∈ R

p. The sub-Gaussian norm of Y is defined as:

‖Y‖ψ2
= sup

{y∈Rp : ‖y‖=1}

| < Y,y > |.

Corollary S6. (Corollary 5.50, Vershynin, 2012)
Consider a sub-Gaussian distribution in R

p with covariance matrix Σ, and let ε ∈ (0, 1), t ≥ 1.
Then, with probability at least 1− 2 exp(−t2p) one has:

‖S−Σ‖∞ ≤ ε if n ≥ C(t/ε)2p.

Here C = Ck depends only on the sub-Gaussian norm K = ‖Y‖ψ2
of a random vector taken from

this distribution.

We are now ready to prove the main result:

Proposition S4. (Fluctuation probability II, ridge)
Let Sk and Sk+1 be sample covariance matrices obtained from samples with size nk and nk+1,

respectively, both drawn from N (0p,Σ) and let Σ̂r,k(λk) and Σ̂r,k+1(λk+1) be the corresponding

updated ridge covariance matrix estimators. Then, given the current covariance estimate Σ̂r,k(λk)
with λk > 0, for every λk+1 ∈ (0,∞), there exists a δ(λk+1) ∈ (0, 1) such that for all t ≥ 1:

P (‖Σ̂r,k+1(λk+1)− Sk+1‖∞ < ‖Σ̂r,k(λk)− Sk‖∞) ≥ 1− 4 exp(−t2p),

if nk+1 ≥ C[2t/δ(λk+1)]
2p. Here C depends only on the sub-Gaussian norm of Y ∼ N (0p,Σ).

Proof. From Lemma S3 it follows that for every λk+1 ∈ (0,∞) there exists a δ(λk+1) > 0 such that:

‖Σ̂r,k+1(λk+1)− Sk+1‖∞ + δ(λk+1) = ‖Σ̂r,k(λk)− Sk+1‖∞

≤ ‖Σ̂r,k(λk)− Sk‖∞ + ‖Sk − Sk+1‖∞

≤ ‖Σ̂r,k(λk)− Sk‖∞ + ‖Sk −Σ‖∞ + ‖Sk+1 −Σ‖∞,

where the triangle inequality has been applied repeatedly. Hence, if ‖Sk −Σ‖∞ + ‖Sk+1 −Σ‖∞ <

δ(λk+1), then ‖Σ̂r,k+1(λk+1)−Sk+1‖∞ < ‖Σ̂r,k(λk)−Sk‖∞. The probability of this happening can,
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using Corollary 5.50, Vershynin (2012), be bounded:

P
(
‖Sk −Σ‖∞ + ‖Sk+1 −Σ‖∞ < δ(λk+1)

)

≥ P
(
‖Sk −Σ‖∞ < 1

2δ(λk+1), ‖Sk+1 −Σ‖∞ < 1
2δ(λk+1)

)

≥ max
{
0, P

(
‖Sk −Σ‖∞ ≤ 1

2δ(λk+1)
)
+ P

(
‖Sk+1 −Σ‖∞ ≤ 1

2δ(λk+1)
)
− 1

}

≥ max{0, 1− 4 exp(−t2p)},

for nk+1 ≥ C[2t/δ(λk+1)]
2p.

Corollary S7. (Fluctuation probability II, Ledoit-Wolf) Let Sk and Sk+1 be sample covariance ma-
trices obtained from samples with size nk and nk+1, respectively, both drawn from N (0p,Σ) and

let Σ̂ℓw,k(νk) and Σ̂ℓw,k+1(νk+1) be the corresponding updated ridge covariance matrix estimators.

Then, given the current covariance estimate Σ̂ℓw,k(νk) with νk > 0, for every νk+1 ∈ (0, 1), there
exists a δ(νk+1) ∈ (0, 1) such that for all t ≥ 1:

P (‖Σ̂ℓw,k+1(νk+1)− Sk+1‖∞ < ‖Σ̂ℓw,k(νk)− Sk‖∞) ≥ 1− 4 exp(−t2p),

if nk+1 ≥ C[2t/δ(νk+1)]
2p. Here C depends only on the sub-Gaussian norm of Y ∼ N (0p,Σ).

Proof. The proof is analogous to that of the ridge covariance estimator (cf., Proposition S4).

SM Ic: Theorem 1

Theorem S1.

The bias of Σ̂ℓw,k(νk), as defined by the updating scheme (2, of the main text), vanishes as the

number of updates increases. Formally, let νk ∈ (0, 1) for all k, then: limk→∞ E[Σ̂ℓw,k(νk)] = Σ.

Proof. Define Σ̂k(νk) = (1− νk)Sk + νkTℓw,k. Let Tℓw,k = Σ̂k−1(νk−1). Then:

Σ̂ℓw,k(νk) =

k∑

κ=1

[ k∏

ℓ=κ+1

νℓ

]
(1− νκ)Sκ +

[ k∏

κ=1

νκ

]
Tℓw,1.

This is a weighted average of all sample covariance matrices, placing more weight on the more recent
ones, and the initial target matrix. In the k → ∞ limit the second summand of right-hand side of
the preceding display will vanish for all νk ∈ (0, 1). That is:

lim
k→∞

Σ̂ℓw,k(νk) = lim
k→∞

k∑

κ=1

[ k∏

ℓ=κ+1

νℓ

]
(1 − νκ)Sκ.

Each of these sample covariances is an unbiased estimator of Σ. Hence, so is the weighted average:
limk→∞ E[Σ̂ℓw,k(νk)] = Σ.

SM Id: Theorem 2

Theorem S2.

The bias of Σ̂r,k(νk), as defined by the updating scheme (1, of the main text), vanishes as the number

of updates increases. Formally, let λk ∈ (0,∞) for all k, then: limk→∞ E[Σ̂r,k(λk)] = Σ.

Proof. The proof proceeds by showing the existence of a stationary density of the Markov process
defined by the updating of the ridge covariance estimators. Then, using stationarity, the claimed
result is easily seen from the estimating equation.

The conditions for the existence of a stationary density of a discrete time, time-homogeneous
Markov process with a continuous state space are specified in Theorem 8.2.14 of Stachurski (2009).
By this theorem it suffices to show for the process at hand that i) it is irreducible, i.e. it satisfies the
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mixing condition, ii) it exhibits geometric drift to the center, and iii) the sequence of its marginal
densities is uniformly integrable. Conditions i) and ii) are checked next, as the uniform integrability
follows from a general argument laid out in Stachurski (2009) and that is applicable here.

The mixing condition requires to show that any U ∈ S++ reachable from U′ ∈ S++ with positive
probability. From the analytic expression of the estimator,

Σ̂r,k+1(λk+1) = 1
2 [Sk+1 − λk+1Σ̂

−1
r,k(λk)] + {λk+1Ipp +

1
4 [Sk+1 − λk+1Σ̂

−1
r,k(λk)]

2}1/2,

it is immediate that any Sk+1 of the form Sk+1 = λk+1Σ̂
−1
r,k(λk)) + U′′ will remove the influence

of the preceding (time-wise) estimator. The problem now reduces to showing that an Sk+1 of this
form may assume any value in S++ with positive probability. From the estimating equation,

Sk+1 = Σ̂r,k+1(λk+1)− λk+1Σ̂
−1
r,k+1(λk+1) + λk+1Σ̂

−1
r,k(λk),

it is clear that U′′ shares its eigenspace with that of Σ̂r,k+1(λk+1). Let Dσ,k+1 denote a diagonal

matrix containing the eigenvalues of Σ̂r,k+1(λk+1). That of U′′ then needs to equal Dσ,k+1 −

λk+1D
−1
σ,k+1 to warrant that the updated estimator indeed equals Σ̂r,k+1(λk+1). Rests to verify

that the required Sk+1 is symmetric and positive definite, which then, by the fact that it follows
a Wishart distribution, has positive probability. The symmetry of Sk+1 is immediate from its
construction. Its positive definiteness is warranted if Dσ,k+1 − λk+1D

−1
σ,k+1 ≻ 0, which happens

when minj{diag(D2
σ,k+1)} > λk+1 > 0. As the penalty parameter λk+1 is chosen in data-driven

fashion, it may be thought of as following some distribution: λk+1 ∼ fλ(·) with positive probability
on R>0. Hence, P [minj{diag(D2

σ,k+1)} > λk+1] > 0.
For the process’ geometric drift to the center let K[U′,U] denote be the Markov kernel of

the process, i.e. the density of U given that the previous k-th observation equals U′, such that∫
S++

K[U′,U] dU = 1. Then, let fW be the density of the Wishart distribution and bound the

conditional expectation of the estimator as:
∫

S++

‖U‖qK[U′,U] dU ≤

∫

S++

‖U− Sk+1‖qK[U′,U] dU

+

∫

S++

‖Sk+1‖q |Ipp + λk+1S
−2
k+1| fW(Sk+1) dSk+1

=

∫

S++

α‖U′ − Sk+1‖qK[U′,U] dU

+

∫

S++

‖Sk+1‖q |Ipp + λk+1S
−2
k+1| fW(Sk+1) dSk+1

≤ α‖U′‖q

∫

S++

K[U′,U] dU+ α

∫

S++

‖Sk+1‖qK[U′,U] dU

+

∫

S++

‖Sk+1‖q |Ipp + λk+1S
−2
k+1| fW(Sk+1) dSk+1

≤ α‖U′‖q + 2

∫

S++

‖Sk+1‖q |Ipp + λk+1S
−2
k+1| fW(Sk+1) dSk+1

where α ∈ (0, 1), Corollary S3 has been inferred, and the Jacobian determinant is derived from
the reformulated estimating equation of the ridge precision estimator: Sk+1 = Σk+1 − λk+1Σ

−1
k+1 +

λk+1Σk. From which the tightness of the sequence now follows.
To conclude the proof, use the fact that by Theorem 8.2.14 of Stachurski (2009) the process

converges to a stationary density. For large enough k the process may be assumed to have reached
stationarity. Then, consider the estimating equation:

Σ̂k+1(λk+1)− Sk+1 = λk+1[Σ̂k+1(λk+1)− Σ̂k(λk)].

Take the expectation with respect to the stationary distribution, and note that the right-hand side
in the preceding display cancels. Hence, E[Σ̂k+1(λk+1)] = E(Sk+1) = Σ for large enough k.
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SM Ie: Theorem 3

Theorem S3. (Consistency)

Let {νk}∞k=1 be a sequence such that νk ∈ (0, 1) for all k and limk→∞(1−νk)/[
∑k

k′′=1(1−νk)
∏k′′−1
k′=1 νk′ ] =

0. Moreover, let {λk}∞k=1 be a sequence such that λk ∈ (0,∞) for all k, λ−1
k ≫ λ−2

k for all k > k0 with

k0 ∈ N sufficiently large, and limk→∞ λ−1
k+1/{

∑k
k′′=1 λ

−1
k′′ [

∏k+1
k′=k′′+1(1−λ−1

k′ )]}. Then, the covariance

matrix estimators Σ̂ℓw,k(νk) and Σ̂r,k(λk) are consistent, i.e. Σ̂ℓw,k(νk)
P
−→ Σ and Σ̂r,k(λk)

P
−→ Σ

as k → ∞.

Proof. The proof invokes Theorem 1 of Jamison, Orey, and Pruitt (1965) on the weak law of weighted
averages. It is left to verify, under the specified assumptions, that the ridge and Ledoit-Wolf shrink-
age covariance matrix estimator sequences satisfy the conditions of Theorem 1 of Jamison, Orey,
and Pruitt (1965). First define the pooled covariance matrix estimator Σ̂pool,k = k−1

∑k
k′=1 Sk′ .

This average of sample covariance matrices is an unbiased and consistent (in k) estimator of Σ.

The sequence of Ledoit-Wolf shrinkage covariance estimators {Σ̂ℓw,k(νk)}∞k=1 is itself a sequence of
weighted averages of the sample covariance matrices as:

Σ̂ℓw,k(νk) =

k∑

κ=1

[ k∏

ℓ=κ+1

νℓ

]
(1− νκ)Sκ +

[ k∏

κ=1

νκ

]
Tℓw,1.

By the condition on {νk}∞k=1 the weights of this weighted average satisfy the condition of Theorem
1 of Jamison, Orey, and Pruitt (1965), and convergence in probability follows (by Theorem 1 of
Jamison, Orey, and Pruitt, 1965) from that of the pooled covariance matrix estimator.

For the ridge covariance estimator assume, without loss of generality, that the sequence {Σ̂r,k+1(λk+1)}∞k=1

is initiated by the stationary density. Hence, the sequence is stationary and unbiased from the start,
irrespective of the choice of the penalty parameters. Now approximate the ridge covariance matrix
estimator around ‘λk = ∞’ by the first order negative term of a Laurent series:

Σ̂r,k+1(λk+1) = (1− λ−1
k+1)Σ̂r,k(λk) + λ−1

k+1Sk+1 +O(λ−2
k+1)

= (1− λ−1
k+1)[(1− λ−1

k )Σ̂r,k−1(λk−1) + λ−1
k Sk] + λ−1

k+1Sk+1 +O(λ−2
k ) +O(λ−2

k+1)

= (1− λ−1
k+1)(1− λ−1

k )Σ̂r,k−1(λk−1) + (1− λ−1
k+1)λ

−1
k Sk + λ−1

k+1Sk+1 +O(λ−2
k ) +O(λ−2

k+1)

= (1− λ−1
k+1)(1− λ−1

k )(1− λ−1
k−1)Σ̂r,k−2(λk−2) + (1− λ−1

k+1)(1 − λ−1
k )λ−1

k−1Sk−1

+(1− λ−1
k+1)λ

−1
k Sk + λ−1

k+1Sk+1 +O(λ−2
k−1) +O(λ−2

k ) +O(λ−2
k+1)

= . . .

=

k∑

k′′=1

λ−1
k′′

[ k+1∏

k′=k′′+1

(1− λ−1
k′ )

]
Sk′ + λ−1

k+1Sk+1 +

k+1∑

κ=1

O(λ−2
κ ),

in which we have used (or chosen such) that λ−1
k ≫ λ−2

k for all k. By the conditions on the
penalty parameter, and thereby the weights in the last expression of the preceding display, and the
consistency of the pooled covariance matrix estimator, Theorem 1 of Jamison, Orey, and Pruitt
(1965) warrants the consistency of the ridge covariance matrix estimator.

SM If: Theorem 4

Theorem S4.

Let Vs, Vt, Vω(λ) the matrices with eigenvectors as columns of S, T, and Ω̂(λ). Then, the map
λ 7→ Vω(λ):

i) is continuous,
ii) has limits limλ↓0 Vω(λ) = Vs and limλ→∞ Vω(λ) = Vt,
iii) can be described by the rotation Vω(λ) = RλVs with Rλ a rotation matrix, and
iv) is constant if Vs = Vt. In particular, when in addition the eigenvalues of S and T are

reciprocal (and thus S = T−1), we have Ω̂(λ) = S−1 for all λ (provided S−1 exists).
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Proof.
i) The eigenvectors of Ω̂(λ) coincide with those of S − λT (cf. van Wieringen and Peeters,

2016). Matrix perturbation theory (Stewart and Sun, 1990) then provides that, for δ > 0
small enough, Vω(λ+δ) ≈ Vω(λ)+ δg(λ,S,T) with g() a smooth function that does not involve
δ. Put together this warrants the continuity of the defined map from the penalty parameter
to the eigenvectors of the ridge covariance and precision matrix.

ii) Proposition 1 of van Wieringen and Peeters (2016) states that limλ↓0 Ω̂(λ) = S−1 (should

it exist) and limλ→∞ Ω̂(λ) = T. In combination with the continuity shown in part i) the
statement is now evident.

iii) The existence of a rotation matrix follows directly from the fact that any orthonormal basis
of Rp is a rotation of any other orthonormal basis of that space. Rests to show that λ 7→ Rλ

is continuous. This is warranted by a variant of the Davis-Kahan sin(Θ) theorem (Davis and
Kahan, 1970; Yu, Wang, and Samworth, 2015 that states that the principal angles between
two sets of eigenvectors from two matrices can be bounded by a constant times the difference
of these matrices. This constant depends on the distance of contiguous eigenvalues of one of
these matrices, but not on their difference. Part i) of the Proposition then warrants, for any
ε > 0, the existence of a δ > 0 such that the difference between Rλ and Rλ+δ is smaller than
ε.

iv) When Vs = Vt it is immediate that S− λT = Vs(Ds − λDt)V
⊤
s . Thus, as the eigenvectors

of Ω̂(λ) coincide with those of S − λT, then Vω(λ) = Vs, which is independent of λ. If

additionally Ds = D−1
t , the eigenvalues of [Ω̂(λ)]−1 equal:

D−1
ω(λ) = λ1/2[D̃+ (Ipp + D̃2)1/2], (4)

where D̃ = 1
2 (λ

−1/2Ds − λ1/2D−1
s ). Using ready algebra applied to the diagonal elements of

equation (4) it can now be seen that D−1
ω(λ) simplifies to Ds.

SM Ig: Theorem 5

An explicit expression of the ridge precision estimator with multiple targets, given λ and α, can
straightforwardly be derived. The estimating equation of Ω, after following a derivation analogous
to that presented in van Wieringen and Peeters (2016), is:

Ω−1 − S− λΩ+ λT̄ = 0pp,

where T̄ =
∑G

g=1 αgTg. The estimator of Ω then equals the root of this equation, which is (cf. van
Wieringen and Peeters, 2016):

Ω̂(λ,α) = { 1
2 (S− λT̄) + [λIpp +

1
4 (S− λT̄)2]1/2}−1, (5)

where α = (α1, . . . , αG). The properties of the ridge precision estimator as formulated in the
introduction then carry over to the estimator above, namely:

Theorem S5.

Let Ω̂(λ,α) be be defined as in Display (5). Then:

i) Ω̂(λ,α) ≻ 0,

ii) limλ↓0 Ω̂(λ,α) = S−1 (provided S ≻ 0),

iii) limλ→∞ Ω̂(λ,α) = T̄,

iv) Ω̂(λ,α) is a consistent estimator of Ω if λn
P

−→ 0 for n → 0, and

v) for a suitable choice of λ, the precision estimator Ω̂(λ,α) outperforms the ML precision esti-
mator in terms of the mean squared error.
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Proof. Note that:

λ
G∑

g=1

αg‖Ω−Tg‖
2
F ∝ λ‖Ω− T̄‖2F .

Parts i), ii), iii), iv) and v) are now immediate from the corresponding statements on the ‘regular’
ridge precision estimator given in van Wieringen and Peeters (2016) and van Wieringen (2017).
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SM II: Simulation I

Banded Ω, p = 10, bias
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Figure 1: The bias of the updated ridge precision estimate (with various targets) vs. k (the update).
The updated ridge precision estimator is initiated with i) a zero target Tr = 0pp, ii) a diagonal
target Tr = Ipp, and a perfect target Tr = Ω. Each panel shows – per target – two sequences of
the bias of the updated ridge precision estimate. Top panels: n = 10 and n = 25. Bottom panels:
n = 50 and n = 100.
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Banded Ω, p = 10, squared Frobenius loss
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Figure 2: The squared Frobenius loss of the updated ridge precision estimate (with various targets)
vs. k (the update). The updated ridge precision estimator is initiated with i) a zero target Tr = 0pp,
ii) a diagonal target Tr = Ipp, and a perfect target Tr = Ω. Each panel shows – per target – two
sequences of the bias of the updated ridge precision estimate. Top panels: n = 10 and n = 25.
Bottom panels: n = 50 and n = 100.

15



Banded Ω, p = 25, bias
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Figure 3: The bias of the updated ridge precision estimate (with various targets) vs. k (the update).
The updated ridge precision estimator is initiated with i) a zero target Tr = 0pp, ii) a diagonal
target Tr = Ipp, and a perfect target Tr = Ω. Each panel shows – per target – two sequences of
the bias of the updated ridge precision estimate. Top panels: n = 10 and n = 25. Bottom panels:
n = 50 and n = 100.
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Banded Ω, p = 25, squared Frobenius loss
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Figure 4: The squared Frobenius loss of the updated ridge precision estimate (with various targets)
vs. k (the update). The updated ridge precision estimator is initiated with i) a zero target Tr = 0pp,
ii) a diagonal target Tr = Ipp, and a perfect target Tr = Ω. Each panel shows – per target – two
sequences of the bias of the updated ridge precision estimate. Top panels: n = 10 and n = 25.
Bottom panels: n = 50 and n = 100.

17



Banded Ω, p = 50, bias
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Figure 5: The bias of the updated ridge precision estimate (with various targets) vs. k (the update).
The updated ridge precision estimator is initiated with i) a zero target Tr = 0pp, ii) a diagonal
target Tr = Ipp, and a perfect target Tr = Ω. Each panel shows – per target – two sequences of
the bias of the updated ridge precision estimate. Top panels: n = 10 and n = 25. Bottom panels:
n = 50 and n = 100.
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Banded Ω, p = 50, squared Frobenius loss
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Figure 6: The squared Frobenius loss of the updated ridge precision estimate (with various targets)
vs. k (the update). The updated ridge precision estimator is initiated with i) a zero target Tr = 0pp,
ii) a diagonal target Tr = Ipp, and a perfect target Tr = Ω. Each panel shows – per target – two
sequences of the bias of the updated ridge precision estimate. Top panels: n = 10 and n = 25.
Bottom panels: n = 50 and n = 100.
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Banded Ω, p = 100, bias
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Figure 7: The bias of the updated ridge precision estimate (with various targets) vs. k (the update).
The updated ridge precision estimator is initiated with i) a zero target Tr = 0pp, ii) a diagonal
target Tr = Ipp, and a perfect target Tr = Ω. Each panel shows – per target – two sequences of
the bias of the updated ridge precision estimate. Top panels: n = 10 and n = 25. Bottom panels:
n = 50 and n = 100.
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Banded Ω, p = 100, squared Frobenius loss
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Figure 8: The squared Frobenius loss of the updated ridge precision estimate (with various targets)
vs. k (the update). The updated ridge precision estimator is initiated with i) a zero target Tr = 0pp,
ii) a diagonal target Tr = Ipp, and a perfect target Tr = Ω. Each panel shows – per target – two
sequences of the bias of the updated ridge precision estimate. Top panels: n = 10 and n = 25.
Bottom panels: n = 50 and n = 100.
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SM III: Effect of updating

Here the various ways in which the target affects the properties of the ridge precision estimator are
described. Similar conclusions can be drawn with respect to the Ledoit-Wolf shrinkage covariance
matrix and its inverse and are omitted here.

Moments

The use of a non-zero target also affects the moments of the ridge precision estimator. For instance, a
penalized estimate is generally biased, but the bias is influenced by the target (cf. van Wieringen and
Peeters, 2016). A spot-on target may reduce the bias, whereas an off target achieves the opposite.
Similarly, the variance of a penalized estimate generally vanishes when a larger penalty parameter
is employed, and the target influences the speed with which this occurs. When put together the
target also determines how much the mean squared error (MSE) of the ridge precision estimator
improves that of its maximum likelihood counterpart (cf., van Wieringen, 2017). These claims can
be deduced from a matrix series expansion of the ridge precision estimator. This is illustrated for
the one dimensional case in Figure 9.
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Figure 9: The expectation (top left), bias (top right), variance (bottom left) and mean squared error
(bottom right) of the targeted ridge precision matrix (with various choices for the target) vs. the
penalty parameter.

Loss

The loss, be it Frobenius or quadratic, may either benefit or suffer from the employed target,
depending on whether it is correct or wrong. This is immediate from the penalty that it introduces

22



bias for any target but the correct one. In general, targets closer (in some sense) to the correct
one yield lower losses than those less resembling the target (cf. the simulations reported in van
Wieringen and Peeters, 2016; Bilgrau et al., 2015).

Edge selection

The target also has an effect on edge selection. van Wieringen and Peeters (2016) invoke the work of
Efron (2004) and Strimmer (2008) to select a probabilistically motivated threshold on the estimated
partial correlations. That work is also applied here. It assumes that in the underlying conditional
independence network most edges are absent. The fraction of absent edges is denoted by π0. In the
precision matrix the absent/present edges correspond to a zero/nonzero diagonal element. This also
holds for the corresponding partial correlations. The distribution of the latter is then assumed to
follow a mixture of the form:π0f0(r) + (1 − π0)f1(r), where f0(r) and f1(r) are the densities of the
absent and present edges, respectively. By the assumption that most of the edges are absent, most
partial correlations follow the f0(·)-law. Using the (say) 80% percentage of the partial correlations
closest to zero, the implementation of Strimmer (2008) estimates f0(·) by means of a truncated
likelihood approach. With f0(·) available, one can now calculate the probability of an edge being
absent giving the observed partial correlation. This probability can be endowed with a local FDR
(False Discovery Rate) interpretation (see Efron, 2004). A cut-off on this probability is then to be
chosen and used as the selection criterion.

To provide some intuition how this procedure is affected by the choice of the target assume – for
the sake of the argument – that a) testing amounts to simple thresholding of the partial correlation
estimate, b) the threshold is chosen prior to testing and independent of the choice of the target, c)

the population precision matrix has a unit diagonal, and d) a ridge precision estimate Ω̂(λ) with
a unit diagonal. Effectively, the assumptions boil down to a ‘testing with known variance’ setting,
and we are only bothered whether the (biased) mean estimates deviate from zero. Now note that a
perfect target cannot increase the bias. In fact, then the estimate gets less biased for larger values
of λ and, consequently, the partial correlation estimates get closer to their true values. This will
benefit selection through thresholding as it will yield less false positives and negatives. Of course,
an imperfect target may have the opposite effect on the edge selection.
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SM IV: Multiple targets

Through simulation we assess whether ridge estimation with multiple targets and cross-validated
parameters λ and α may actually distinguish between various targets. That is, would the proposed
procedure yield the largest penalty parameter λαg for the target closest to the truth and thus shrink
the estimator most towards the ‘best’ target? To this end a test scenario, comprising either two or
three targets and various sample and dimension sizes, is constructed. The employed precision and
target matrices employed are:

• The banded precision matrix Ω is as in the simulation of Section 2 of the main document.
• The first target matrix T1 has unit diagonal and a single off-diagonal band. Its elements are
specified through: (Ω)jj = 1 for j = 1, . . . , p, (Ω)j,j+1 = 1

5 = (Ω2)j+1,j for j = 1, . . . , p − 1,
and zero otherwise.

• The second target matrix T2 has a unit diagonal with a uniform partial correlation structure:
(T2)jj = 1 for j = 1, . . . , p and (T2)j1,j2 = 1

5 for (j1, j2) ∈ {j1 6= j2 : j1, j2 = 1, . . . , p}.
• The third target matrix T3 is uninformative: T3 = Ipp.

Intuitively, the first target, T1, is best (which could be operationalized as being closest to Ω in the
Frobenius norm). For the sample size and dimension we choose n, p ∈ {10, 25, 50, 100} and consider
all sixteen possible combinations. For each (n, p)-choice data are sampled from the multivariate
normal N (0p,Ω

−1). From these data optimal penalty parameters, denoted λopt and αopt, are de-
termined through leave-one-out cross-validation. The latter is done using all three targets, but also
with only two targets using either T1 and T2 or T1 and T3. The above is repeated ten thousand
times.

The determined αopt are summarized element-wise as histograms in the SM IV. The following
can be deduced from these histograms:

• In the three-target case the αopt,1 are larger than the other elements of αopt. This indicates
that T1 is most often the preferred target.

• When the sample size n is increased while the dimension p stays fixed, the LOOCV procedure
yields the dominance of the αopt,1 over αopt,2 and αopt,3 becomes more pronounced. Hence,
more data helps to delineate the best target.

• When the dimension p is increased while the sample size stays fixed, the αopt,1 generally
dominate the other elements of αopt but to a lesser degree. Hence, it becomes harder to
identify the best target when the problem becomes more high-dimensional.

• In the two-target case, the penalty parameter of the T1 generally dominates that of the other
target, be it T2 or T3. Moreover, the observations above with respect to the increase of sample
size and dimension remain valid.

The above concentrates on the αopt. The λopt determines the size and thereby relevance of the
observed difference in the αopt. This was investigated by pairwise scatterplots (not shown) of the
λoptαopt,g. Although the scatterplots slightly attenuate the points made above on the basis of the
histograms, the main message is unaffected.
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Figure 10: Topleft panel: Constraint on the entries of Ω induced by the mixture ridge penalty, for
various choices of α. The solid dots represent the center of each constraint. Remaining panels, clock-
wise: Histograms of the elements of the optimal α as determined by leave-one-out cross-validation.
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SM IVa: Three-target case, p = 10
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Figure 11: Three-target case with p = 10. Histograms of the elements of the optimal α as determined
by leave-one-out cross-validation. Left and right column correspond to samples n = 10 and n =
25, respectively. The rows, from top to bottom, correspond to the first to last elements of αopt,
representing the weights of each target’s contribution to the penalty.
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Figure 12: Three-target case with p = 10. Histograms of the elements of the optimal α as determined
by leave-one-out cross-validation. Left and right column correspond to samples n = 50 and n =
100, respectively. The rows, from top to bottom, correspond to the first to last elements of αopt,
representing the weights of each target’s contribution to the penalty.
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SM IVb: Three-target case, p = 25
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Figure 13: Three-target case with p = 25. Histograms of the elements of the optimal α as determined
by leave-one-out cross-validation. Left and right column correspond to samples n = 10 and n =
25, respectively. The rows, from top to bottom, correspond to the first to last elements of αopt,
representing the weights of each target’s contribution to the penalty.
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Figure 14: Three-target case with p = 25. Histograms of the elements of the optimal α as determined
by leave-one-out cross-validation. Left and right column correspond to samples n = 50 and n =
100, respectively. The rows, from top to bottom, correspond to the first to last elements of αopt,
representing the weights of each target’s contribution to the penalty.
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SM IVc: Three-target case, p = 50
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Figure 15: Three-target case with p = 50. Histograms of the elements of the optimal α as determined
by leave-one-out cross-validation. Left and right column correspond to samples n = 10 and n =
25, respectively. The rows, from top to bottom, correspond to the first to last elements of αopt,
representing the weights of each target’s contribution to the penalty.
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Figure 16: Three-target case with p = 50. Histograms of the elements of the optimal α as determined
by leave-one-out cross-validation. Left and right column correspond to samples n = 50 and n =
100, respectively. The rows, from top to bottom, correspond to the first to last elements of αopt,
representing the weights of each target’s contribution to the penalty.
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SM IVd: Three-target case, p = 100
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Figure 17: Three-target case with p = 100. Histograms of the elements of the optimal α as deter-
mined by leave-one-out cross-validation. Left and right column correspond to samples n = 10 and
n = 25, respectively. The rows, from top to bottom, correspond to the first to last elements of αopt,
representing the weights of each target’s contribution to the penalty.
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Figure 18: Three-target case with p = 100. Histograms of the elements of the optimal α as deter-
mined by leave-one-out cross-validation. Left and right column correspond to samples n = 50 and
n = 100, respectively. The rows, from top to bottom, correspond to the first to last elements of
αopt, representing the weights of each target’s contribution to the penalty.

33



Multi-target case, R- and cpp-code

The simulation studying the selection of the penalty parameters in the presence of a multi-target
ridge penalty uses the following scripts:

• twoTargetsLOOCV.r

• threeTargetsLOOCV.r

• mridgePfunctions.cpp

• plotHistograms.cpp

The R-script work on a ‘copy+paste’ basis, but makes use of the C++-code provided through the
script mridgePfunctions.cpp. The latter file is to be stored in the working directory, in order for
it to be compiled by the R-script.
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SM V: Application

The proposed updating of a Gaussian graphical model via iterative targeted penalized estimation
is illustrated on data from five subsequently published breast cancer studies. The illustration aims
to estimate the precision matrix and therefrom reconstruct the gene-gene interaction network, as
operationalized by the conditional independence graph underlying the Gaussian graphical model, of
ten pathways by updating. The first published data set is used for initiation, in which the effect of
incorporating existing molecular biological knowledge on the network is studied.

Gene expression data of the five breast cancer studies are available through the Bioconductor
repository (Gentleman et al., 2004). The studies were conducted in different hospitals but the breast
cancer samples were all interrogated transcriptomically using the same Affymetrix 133a platform.
The available data sets have been curated and preprocessed by Schröder et al. (2011). The samples
of each study are limited to those that are estrogen positive (ER+), as breast cancer is a hormone
related form of cancer and pathways may behave differently between estrogen groups (e.g., Creighton
et al., 2015). The data sets, in order of appearance of the corresponding publication, (with their
ER+ sample size in brackets), are called: VDX (n = 209), UPP (n = 213), UNT (n = 86), TRANSBIG
(n = 134), and MAINZ (n = 162), where acronyms have been adopted from Schröder et al. (2011).
The data sets are further subsetted (in their dimension p) to form data sets with data of ten
pathways. The pathways, the genes that constitute them and the relationship among these genes,
are taken from the KEGG repository (Ogata et al., 1999), available through the R-packages KEGG.db
and KEGGgraph. The latter package provides directed graphs of the pathway, which are moralized to
obtain undirected ones. Subsequently, the nomenclature of the genes was matched between pathways
and the data sets. This amounted to the conversion of gene names to standardized EntrezID’s. The
resulting pathway dimensions range from p = 29 to p = 240 and their number of edges from 5% to
29%. Finally, the data have been gaussianized (see Section 4 of the main document).

The topology of the ten pathways is reconstructed by updating the ridge estimates of their
precision matrices from the transcriptomic data. Updating is initiated by a target precision matrix
constructed from the first VDX data set by the graphical lasso (Friedman, Hastie, and Tibshirani,
2008), with either a zero or infinitely large penalty parameter for precision elements that correspond
to edges present or absent (respectively) in the pathway topology of the repository. For reference
a simple diagonal precision target, corresponding to an empty network, is taken along. The initial
targets are used in the estimation of the precision matrices from the next UPP data set, with the
penalty parameter chosen by leave-one-out cross-validation. The resulting estimate serves in turn
as target precisions for the subsequent data set. This last step is repeated till the fifth MAINZ data
set.

A first but indirect view of the updating results concentrates on the chosen penalty parameter
values. They represent a weighing of the information provided by current and preceding data. Should
the subsequent ridge precision estimates approach a precision matrix that is assumed common to all
data sets, it is expected that the penalty parameter increases with each update. The top left panel
of Figure 19 shows the leave-one-out penalty parameter values initiated with the diagonal target.
The plots (hardly different between the initial targets) reveal a increasing trend of these penalty
parameter values, consistently over the pathways. The varying sample sizes of the data sets seem
not to affect this trend. By virtue of the weighted average interpretation (as pointed out in Section
2 of the main document), the target thus increasingly contains more relevant information for the
estimation of the precision matrix from the next data set.

The ridge precision matrix estimates are used to evaluate whether updating via shrinkage is
beneficial. Would each data set indeed provide information on the same model system, they may be
considered as draws from the same distribution. Then, the asymptotic unbiasedness and consistency
of the updated ridge precision estimate (Corollary 1 of the main document) implies the convergence
of the subsequent estimate. While this is an asymptotic statement, the obtained updated estimates
may be used to investigate whether there is indeed a tendency towards such a trend. Hereto the top
right panel of Figure 19 shows the squared error loss of the difference between subsequent estimates,
‖Ω̂r,k+1(λk+1,opt)−Ω̂r,k(λk,opt)‖2F . Indeed the plot shows, consistently over the pathways, a tendency
towards a diminishing difference with an increasing number of updates. In part, this is not surprising
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after the increasing penalty parameters. Finally, while the chosen penalty parameters exhibit little
differences between the two initial targets, the differences between subsequent precision matrix
estimates are slightly higher for the updated precision initiated with the KEGG informed target
(see SM IV).

The fit of the updated estimates of the precision matrices is evaluated by means of their quadratic
loss in relation to the sample covariance matrix, ‖Ω̂r,k(λk,opt)Sk−Ipp‖2F . The left panel of the middle
row of Figure 19 shows these losses. They appear to be stable, with a little ‘hick-up’ in the UNT
data set. Closer inspection reveals that, from the first to the last data set, there is even a small
decrease. Perhaps not spectacular, but in light of precision matrix estimates that are more alike,
i.e. borrow more from the preceding data sets, it is reassuring that the fit does not detoriate, and
even improves. For comparison the latter analysis has been repeated for the ridge covariance matrix
estimator from the pooled data as well as the pooled sample covariance matrix (as defined at the
end of Section 2 of the main document). The result for the former (which performs better than
the latter) is shown in the right panel of the middle row of Figure 19. Generally, the pooled ridge

precision matrix estimator exhibits the same behavior as Ω̂r,k(λk,opt) in terms of fit. It does not show
the aforementioned ‘hick-up’, which is smoothed out due to the pooling. However, its quadratic loss
is generally worse, especially in the last two updates – except for the Citrate cycle-pathway which is
smallest in dimension. The above picture, i.e. a better loss for the updated ridge precision estimator,
is preserved when studying the Frobenius loss (instead of the quadratic loss).

To assess the value of the qualitative (topological) information stored on the KEGG repository,
the updated precision estimates are sparsified. Sparsification uses the empirical Bayes procedure
proposed by Efron (2004) and is implemented for the screening of nonzero elements of a precision
matrices by Strimmer (2008). Note that the dimension of the Citrate cycle pathway, p = 29,
is too small to produce reliable inference of the precision matrices’ support with the employed
procedure, and is therefore ignored in the remainder. The gene-gene interaction networks inferred
from the updated precision estimates initiated with a non-informative target are much sparser than
those inferred from their KEGG informed counterparts. But while the former sequence of networks
gradually gains edges, the latter networks become sparser over the updates. The stability of the
selected edges is assessed by the overlap between subsequently inferred networks (see SM IV). In line
with the previous observation this overlap in- and decreases for the network sequences initiated with
non- and KEGG informed, respectively. Moreover, the overlap between the networks inferred from
the differently initiated updated precision matrices is determined per data set (see SM IV). Initially,
until the UNT this overlap grows, suggesting the data prevails. But the overlap shows a decrease in
the TRANSBIG data set, to recover slightly in the final MAINZ data set. More updates are needed to
assess whether this will stabilize. The discussed plot also reveals that some pathways, e.g., apoptosis,
exhibit hardly any overlap. These generally also have a low number of selected edges (irrespective
of the chosen initialization). This is most likely due to the fact that they have been inactivated in
ER+ breast cancer tissue. Finally, the initiation can be seen to have a lasting influence. The bottom
panels of figure 19 show the inferred Cell cycle pathway with a non- and KEGG informed initiation
(left and right panel, respectively). The edge widths in these network plots are proportional to the
number of data sets in which the edge has been selected. Apart from edges present or absent in one
but not the other, most notable is that the KEGG informed network has more edges present in all
updates of the pathway’s network. Some of these edges have indeed been reported in the literature
to be active interactions in ER+ breast cancer. Hence, the KEGG informed initiation may indeed
be a good initial guess, thereby speeding up convergence to biologically sensible results.

The analysis above has been repeated for the reversed and a random order of the data sets.
Similar trends in relation between e.g. the penalty parameter, the loss, the sequential difference, et
cetera versus the order of the data sets are observed. These trends are most monotone for the random
order, with the chronological and the reversed order showing a small ‘hick-up’ from monotonicity.
This suggests that one (or a couple of the) data set(s) differs a little from the others. This difference,
however, does not ruin the global trend.
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Table 1: Data sets in order of appearance, the related publication, their ER+ sample size, and the
R-package with its data.

Dataset Publication # ER+ R-package

VDX Wang et al. (2005) 209 breastCancerVDX

UPP Miller et al. (2005) 213 breastCancerUPP

UNT Sotiriou et al. (2006) 86 breastCancerUNT

TRANSBIG Desmedt et al. (2007) 134 breastCancerTRANSBIG

MAINZ Schmidt et al. (2008) 162 breastCancerMAINZ

Table 2: Pathways, names and KEGG ID, number of genes and edge (absolute and in percentage).

Pathway KEGG ID # genes # edges # edges (%)
mapk hsa04010 240 1770 6.17
p53 hsa04115 62 101 5.34
erbb hsa04012 82 299 9.00
apoptosis hsa04210 354 79 11.49
wnt hsa04310 126 1104 14.02
TGFb hsa04350 80 386 12.22
VEGF hsa04370 68 285 12.51
Citrate cycle hsa00020 29 121 29.06
JakSTAT hsa04630 138 1638 17.33
Cell cycle hsa04110 104 866 16.03
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Figure 19: Top left panel: the optimal penalty parameter for each data set, connected by a line within
each pathway. The coloring of lines and symbols ranges (throughout all panels) from red to light
yellow, which corresponds to the pathways with the largest and smallest dimensions, respectively,
and intermediate colors representing intermediate dimension sizes. Top right panel: the squared
error between sequential ridge precision estimates. Middle panels: the quadratic loss of the updated
ridge (left) and pooled ridge (right) precision estimate to the sample covariance matrix. Bottom
panels: gene-gene interaction networks of the Cell cycle pathway inferred from the updated ridge
precision estimates initiated with a diagonal target (left) and a KEGG inspired target (right). The
edge width is proportional to the number of data sets in which the edge is selected.
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Figure 20: Analysis results with datasets in chronological order. Top panels: the optimal penalty
parameter for each dataset for connected by a line within each pathway. The coloring of lines
and symbols ranges (throughout all panels) from red to light yellow, which corresponds to the
pathways with the largest and smallest dimensions, respectively, and intermediate colors representing
intermediate dimension sizes. Middle panels: the quadratic loss of the updated ridge precision
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Figure 21: Analysis results with datasets in chronological order. Top panels: the number of edges
in the support inferred from updated ridge precision estimates initiated with a diagonal target (left)
and a KEGG inspired target (right). Middle panels: the number of overlapping edges in the support
inferred from subsequent updated ridge precision estimates initiated with a diagonal target (left)
and a KEGG inspired target (right). Bottom panel: the number of overlapping edges between the
support from the update ridge precision initiated with a diagonal and a KEGG inspired target.
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Figure 22: Analysis results with datasets in reversed order. Top panels: the optimal penalty pa-
rameter for each dataset for connected by a line within each pathway. The coloring of lines and
symbols ranges (throughout all panels) from red to light yellow, which corresponds to the path-
ways with the largest and smallest dimensions, respectively, and intermediate colors representing
intermediate dimension sizes. Middle panels: the quadratic loss of the updated ridge precision
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Figure 23: Analysis results with datasets in reversed order. Top panels: the number of edges in the
support inferred from updated ridge precision estimates initiated with a diagonal target (left) and
a KEGG inspired target (right). Middle panels: the number of overlapping edges in the support
inferred from subsequent updated ridge precision estimates initiated with a diagonal target (left)
and a KEGG inspired target (right). Bottom panel: the number of overlapping edges between the
support from the update ridge precision initiated with a diagonal and a KEGG inspired target.
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Figure 24: Analysis results with datasets in random order. Top panels: the optimal penalty pa-
rameter for each dataset for connected by a line within each pathway. The coloring of lines and
symbols ranges (throughout all panels) from red to light yellow, which corresponds to the path-
ways with the largest and smallest dimensions, respectively, and intermediate colors representing
intermediate dimension sizes. Middle panels: the quadratic loss of the updated ridge precision
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Figure 25: Analysis results with datasets in random order. Top panels: the number of edges in the
support inferred from updated ridge precision estimates initiated with a diagonal target (left) and
a KEGG inspired target (right). Middle panels: the number of overlapping edges in the support
inferred from subsequent updated ridge precision estimates initiated with a diagonal target (left)
and a KEGG inspired target (right). Bottom panel: the number of overlapping edges between the
support from the update ridge precision initiated with a diagonal and a KEGG inspired target.
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Application, R-code

The application uses the following scripts:
• application1 preprocessingData.r

• application2 updating.r

• application3 supportComparison.r

The R-script work on a ‘copy+paste’ basis.
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