

Graphical Modeling of High-Throughput Metabolomics Data

Differential Networks pertaining to Alzheimer's Disease

Carel F.W. Peeters Dept. of Epidemiology & Biostatistics VU University medical center, Amsterdam cf.peeters@vumc.nl

> Brain Network Seminar Dept. of Clinical Neurophysiology VU University Medical Center, Amsterdam September 12, 2016

(日) (同) (日) (日)

Contributors

Wessel N. van Wieringen Dept. of Epimiology & Biostatistics, VUMC Dept. of Mathematics, VU University Amsterdam

Anders E. Bilgrau Novo Nordisk Dept. of Mathematical Sciences, Aalborg University

Mark A. van de Wiel Dept. of Epimiology & Biostatistics, VUMC Dept. of Mathematics, VU University Amsterdam

Contributors

Francien de Leeuw Alzheimer Center, VUMC

Charlotte Teunissen Neurology Laboratory, Dept. of Clinical Chemistry, VUMC

Wiesje van der Flier Alzheimer Center, VUMC Dept. of Epimiology & Biostatistics, VUMC

Contributors

Thomas Hankemeier Division for Analytical Biosciences, Leiden University

Herman van Vlijmen Dept. of Medicinal Chemistry, Leiden University Molecular Sciences div., Janssen Pharmaceutica

Cornelia van Duijn Netherlands Institute for Health Sciences Dept. of Genetic Epimiology, Erasmus MC

Methodological Developments

European Community Seventh Framework Programme (FP7): grant agreement No. FP7-269553

Data and Analyzes

Janssen Pharmaceutica Stellar funded project (IMMEDIAD): Stellar Neurodegeneration Collaboration Project, Call 2, No. 3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Outline

6 / 47

CFWP

Omics and omics data

-ome

A totality of some (molecular biological) sort

-omics

Collective quantification of some pool of molecular molecules

Metabolomics

The omics of small-molecule metabolites (of some organism)

イロト 不得下 イヨト イヨト

Metabolite quantification

Illustration adapted from: http://planetorbitrap.com/untargeted-metabolomics#.Vzw6yfmLRaQ &

http://metabolomicsplatform.com/metabolomics-overview/

CFWP

Graphical Modeling Metabolomics

KNF BNS, 12/09/2016, Amsterdam 8 / 47

Challenge: Dimensionality metabolomic data

	Variables		Variables (features)
	1 2 3 ····· <i>p</i>	1 2 3	4 5 · · · · · · p
1	$y_{11} \ y_{12} \ y_{13} \cdots y_{1p}$	1 y ₁₁ y ₁₂ y ₁	₃ y ₁₄ y ₁₅ y _{1p}
tions 5	$y_{21} \ y_{22} \ y_{23} \cdots y_{2p}$		³ y ₂₄ y ₂₅ y _{2p}
serva 3	$y_{31} \ y_{32} \ y_{33} \cdots \cdots y_{3p}$	X 3 Y ₃₁ Y ₃₂ Y ₃₁	³ Y ₃₄ Y ₃₅ Y _{3p}
ê 4	$y_{41} \ y_{42} \ y_{43} \cdots y_{4p}$	ð :	
5 	Y51 Y52 Y53 Y5p		

Regular data: n > p

Metabolomic data: p > n or p >> n

Unit of analysis

イロト イヨト イヨト イヨト

3

10 / 47

Motivation

Desire

- Consider data from multiple metabolomic platforms simultaneously
- Exploratively infer graph (reconstruct metabolic topology)
- Cope with high-dimensional situation
- Take juxtaposition AD vs. SC formally into account

Graphs

Representation

Pathways are represented by a graph (or network)

Vertices

○ Node or vertex represents molecular feature

Edges

Edge or arrow represents some functional relation

Example

Three variables: Y_1, Y_2 , and Y_3

Marginal dependence

Undirected edge represents marginal dependence

Interpretational danger

True mechanism

Not observing Y_1 : Spurious association Observing Y₁: Saturated graph

14 / 47

Solution: Conditioning

Solution: Conditioning

・ロト ・回ト ・ヨト ・ヨト

3

Conditional dependence

Partial correlation

Measures degree of association between two random variables when controlling for third variables

Conditioned correlation

 $cor(Y_1, Y_2|Y_3)$ $cor(Y_1, Y_3 | Y_2)$ $cor(Y_2, Y_3 | Y_1)$

If, e.g., $cor(Y_2, Y_3|Y_1) = 0$, we say Y_2 and Y_3 are independent given Y_1

Gaussian graphical modeling

Graphical modeling

Class of models using graphs to express conditional (in)dependence relations between random variables

Gaussian setting

- Vertices: Correspond to random variables with normal distribution
- Edges: Correspond to the dependence structure
- Say $\mathbf{y} \sim \mathcal{N}_p(\mathbf{0}, \mathbf{\Sigma})$, and define $\mathbf{\Sigma}^{-1} \equiv \mathbf{\Omega}$. Then, for $a, b \in$ vertex set V, $a \neq b$

Gaussian graphical modeling

$$oldsymbol{\Omega} = \left[egin{array}{ccc} \omega_{11} & \omega_{12} & \omega_{13} \ \omega_{21} & \omega_{22} & 0 \ \omega_{31} & 0 & \omega_{33} \end{array}
ight]$$

Conditional independence graph

$$\mathbf{\Sigma} = \mathbf{\Omega}^{-1} = \begin{bmatrix} \sigma_{11} & \sigma_{12} & \sigma_{13} \\ \sigma_{21} & \sigma_{22} & \sigma_{23} \\ \sigma_{31} & \sigma_{32} & \sigma_{33} \end{bmatrix}$$

Correlation graph

イロト イヨト イヨト イヨト

2

Full-Swing back to Challenge: High-dimensional data

Problem

- Let $\boldsymbol{S}\equiv\hat{\boldsymbol{\Sigma}}$ denote the sample covariance matrix on \mathbf{y}_{i}
- When $p \approx n$ or p > n, **S** is ill-behaved or singular
- $\bullet\,$ The precision ${\bm S}^{-1}\equiv \hat{\bm \Omega}$ is then undefined

A (1) > A (2) > A

Solution: ℓ_2 -Penalization

Maximize

$$\underbrace{ \mathsf{ln} \, |\boldsymbol{\Omega}| - \mathsf{tr}(\boldsymbol{S}\boldsymbol{\Omega})}_{\mathrm{log-likelihood}} - \underbrace{\frac{\lambda}{2} \|\boldsymbol{\Omega} - \boldsymbol{\mathsf{T}}\|_2^2}_{\ell_2 - \mathrm{penalty}}$$

- T denotes a p.d. symmetric target matrix
- $\lambda \in (0,\infty)$ denotes a penalty parameter

Analytic penalized ML estimator

$$\hat{\mathbf{\Omega}}(\lambda) = \left\{ \left[\lambda \mathbf{I}_{
ho} + rac{1}{4} (\mathbf{S} - \lambda \mathbf{T})^2
ight]^{1/2} + rac{1}{2} (\mathbf{S} - \lambda \mathbf{T})
ight\}^{-1}$$

Multiple data classes

22 / 47

Targeted fused ridge estimation

Maximize

$$\mathcal{L}\left(\{\boldsymbol{\Omega}_{g}\};\{\boldsymbol{\mathsf{S}}_{g}\}\right) - \frac{\lambda}{2} \sum_{g} \left\|\boldsymbol{\Omega}_{g} - \boldsymbol{\mathsf{T}}_{g}\right\|_{F}^{2} - \frac{\lambda_{f}}{4} \sum_{g_{1},g_{2}} \left\|\left(\boldsymbol{\Omega}_{g_{1}} - \boldsymbol{\mathsf{T}}_{g_{1}}\right) - \left(\boldsymbol{\Omega}_{g_{2}} - \boldsymbol{\mathsf{T}}_{g_{2}}\right)\right\|_{F}^{2}$$

- T_g indicate class-specific target matrices
- $\lambda \in (0,\infty)$ denotes the ridge penalty parameter
- $\lambda_f \in [0,\infty)$ denotes the fusion penalty parameter

23 / 47

(日) (同) (日) (日)

Approach

Steps

- Class precision matrices were estimated by ridge fusion
- Optimal penalty parameters were determined by cross-validation
- Class-specific target matrices expressed little prior information
- Support determination on the basis of thresholding
 - retain strongest edges: corresponds to posterior probability thresholding
- Subsequent focus on differential network visualization and analysis

(日) (同) (日) (日)

SC Connections

AD Connections

Shared Connections

Differential Connections

Differential Connections

Differential Connections

2

・ロト ・回ト ・ヨト ・ヨト

The Hoff

References

Manual/Download

 Peeters, C.F.W., Bilgrau, A.E., & van Wieringen, W.N. (2016). "rags2ridges: Ridge Estimation of Precision Matrices from High-Dimensional Data". R package, version 2.1.1 URL: https://cran.r-project.org/package=rags2ridges.

Theory/Methodology

- Peeters*, C.F.W., Bilgrau*, A.E., Eriksen, P.S., Boegsted, M., & van Wieringen, W.N. (2015). "Targeted Fused Ridge Estimation of Inverse Covariance Matrices from Multiple High-Dimensional Data Classes". arXiv:1509.07982v1 [stat.ME].
- Peeters, C.F.W., van Wieringen, W.N., & van de Wiel, M.A. (in preparation). "Directed Cyclic Mixed Graph Modeling for High-Dimensional Genomic Data Integration".
- van Wieringen, W.N. & Peeters, C.F.W. (2016). "Ridge Estimation of Inverse Covariance Matrices from High-Dimensional Data". Computational Statistics & Data Analysis, 103: 284-303. arXiv:1403.0904v3 [stat.ME].

Software

- Peeters, C.F.W., van de Wiel, M.A., & van Wieringen, W.N. (2016) "The Spectral Condition Number Plot for Regularization Parameter Determination". arXiv:1608.04123v1 [stat.CO].
- van Wieringen, W.N. & Peeters, C.F.W. (2015). "Application of a New Ridge Estimator of the Inverse Covariance Matrix to the Reconstruction of Gene-Gene Interaction Networks". In: di Serio, C., Lio, P., Nonis, A., and Tagliaferri, R. (Eds.) 'Computational Intelligence Methods for Bioinformatics and Biostatistics'. Lecture Notes in Computer Science, vol. 8623. Springer, pp. 170–179.

Explaining the inverse

The scalar inverse

- Let a denote a number (excluding 0)
- The inverse is then the number *b* such that $a \times b = 1$
- Clearly, $b = \frac{1}{a}$

Matrix

A matrix is a generalization of a number, an array of numbers

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1p} \\ a_{21} & a_{22} & \cdots & a_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ a_{p1} & a_{p2} & \cdots & a_{pp} \end{bmatrix}$$

イロト 不得下 イヨト イヨト

Explaining the inverse

The Matrix Inverse

Consider the matrix **A**. Its inverse $\mathbf{B} = \mathbf{A}^{-1}$ is defined such that

AB = I,

where

$$\mathbf{I} = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}$$

Solution

$$\mathbf{A}^{-1} = \left[\begin{array}{cc} \mathbf{A}_{11}^{-1} + \mathbf{A}_{11}^{-1} \mathbf{A}_{12} \mathbf{Q}^{-1} \mathbf{A}_{21} \mathbf{A}_{11}^{-1} & -\mathbf{A}_{11}^{-1} \mathbf{A}_{12} \mathbf{Q}^{-1} \\ -\mathbf{Q}^{-1} \mathbf{A}_{21} \mathbf{A}_{11}^{-1} & \mathbf{Q}^{-1} \end{array} \right]$$

with $\bm{Q}=\bm{A}_{22}-\bm{A}_{21}\bm{A}_{11}^{-1}\bm{A}_{12}$ denoting the Schur complement.

Appendix

Matrix Inverse

Singularity

<ロ> <個> <ヨ> <ヨ> 三日

Recall: ridge estimation

Analytic maximizing argument

$$\hat{\mathbf{\Omega}}(\lambda) = \left\{ \left[\lambda \mathbf{I}_p + rac{1}{4} (\mathbf{S} - \lambda \mathbf{T})^2
ight]^{1/2} + rac{1}{2} (\mathbf{S} - \lambda \mathbf{T})
ight\}^{-1}$$

イロト イヨト イヨト イヨト

æ

Properties

Behavior

i. $\hat{\Omega}(\lambda) \succ 0$, for all $\lambda \in (0, \infty)$; ii. $\lim_{\lambda \to 0^+} \hat{\Omega}(\lambda) = \mathbf{S}^{-1}$ if p < n; iii. $\lim_{\lambda \to \infty} \hat{\Omega}(\lambda) = \mathbf{T}$.

Consistency

i.
$$\lim_{n\to\infty} \mathbb{E}\left[\hat{\Omega}_n(\lambda_n)\right] \longrightarrow \lim_{n\to\infty} \mathbb{E}\left(\mathbf{S}_n^{-1}\right) = \mathbf{\Omega};$$

ii. $\lim_{n\to\infty} \mathbb{E}\left(\|\hat{\Omega}_n(\lambda_n) - \mathbf{\Omega}\|_F^2\right) = 0.$

Visual explanation

イロト イヨト イヨト イヨト

2

Choosing the penalty value

K-fold cross-validation (CV)

Single iteration of *K*-fold CV

40 / 47

Choosing the penalty value

K-fold CV score

$$\varphi^{\kappa}(\lambda) = \sum_{k=1}^{\kappa} n_k \left\{ -\ln |\hat{\boldsymbol{\Omega}}(\lambda)_{-k}| + \operatorname{tr}[\hat{\boldsymbol{\Omega}}(\lambda)_{-k} \mathbf{S}_k] \right\},\,$$

 n_k is the size of subset k, for $k = 1, \ldots, K$ disjoint subsets; \mathbf{S}_k denotes the sample covariance matrix on *kth* test set; $\hat{\mathbf{\Omega}}(\lambda)_{-k}$ denotes the estimated regularized precision matrix on *kth* training set

Highest predictive accuracy

Choose $n_k = 1$, such that K = n (known as leave-one-out CV - LOOCV)

Problem

K-fold CV is computationally demanding for large p and/or large K

Solution

Computationally efficient approximate LOOCV score

41 / 47

Support determination

Scaling

 $\hat{\mathbf{P}}(\lambda)$: Regularized precision estimate scaled to partial correlation form

Assume

Nonredundant off-diagonal partial correlation coefficients (indexed by j < j') follow a mixture distribution:

$$f\left\{\left[\hat{\mathbf{P}}(\lambda^{*})\right]_{jj'}\right\} = \eta_{0}f_{0}\left\{\left[\hat{\mathbf{P}}(\lambda^{*})\right]_{jj'};\kappa\right\} + (1-\eta_{0})f_{\mathcal{E}}\left\{\left[\hat{\mathbf{P}}(\lambda^{*})\right]_{jj'}\right\}$$

- $\eta_0 \in [0,1]$ is the mixture weight
- $f_0\{\cdot\}$ denotes the distribution of a null-edge
- $f_{\mathcal{E}}\{\cdot\}$ denotes the distribution of a present edge

Determine

$$P\left(Y_{j} \neq Y_{j'} | [\hat{\mathbf{P}}(\lambda^{*})]_{jj'}
ight)$$

Situation

Data

- G classes of $(n_g \times p)$ -dimensional data
- Classes defined by data sets and/or (subtypes of) diseases

Assumption

Precision matrices of constituent classes chiefly share the same structure but potentially differ in a number of locations of interest

Desire

Integrative or meta-analytic Gaussian graphical modeling

イロト 不得下 イヨト イヨト

Targeted fused ridge estimation: General Formulation

Maximize

$$\underbrace{\mathcal{L}\left(\{\boldsymbol{\Omega}_{g}\};\{\boldsymbol{\mathsf{S}}_{g}\}\right)}_{\text{log-likelihood}} - \sum_{g} \underbrace{\frac{\lambda_{gg}}{2} \left\|\boldsymbol{\Omega}_{g} - \boldsymbol{\mathsf{T}}_{g}\right\|_{F}^{2}}_{\text{ridge-penalty}} - \sum_{g_{1},g_{2}} \underbrace{\frac{\lambda_{g_{1}g_{2}}}{4} \left\|\left(\boldsymbol{\Omega}_{g_{1}} - \boldsymbol{\mathsf{T}}_{g_{1}}\right) - \left(\boldsymbol{\Omega}_{g_{2}} - \boldsymbol{\mathsf{T}}_{g_{2}}\right)\right\|_{F}^{2}}_{\text{fusion-penalty}}$$

- T_g indicate class-specific target matrices
- $\lambda_{gg} \in (0,\infty)$ denote class-specific ridge penalty parameters
- $\lambda_{g_1g_2} \in [0,\infty)$ denote pair-specific fusion penalty parameters, $\lambda_{g_1g_2} = \lambda_{g_2g_1}$

Penalty matrix

All penalties can be collected into a non-negative symmetric matrix $\mathbf{\Lambda} = [\lambda_{g_1g_2}]$

Targeted fused ridge estimation

Maximizing argument for class g_0

$$\hat{\boldsymbol{\Omega}}_{g_0} \left(\boldsymbol{\Lambda}, \{ \boldsymbol{\Omega}_g \}_{g \neq g_0} \right) = \left\{ \left[\bar{\lambda}_{g_0} \boldsymbol{\mathsf{I}}_{\rho} + \frac{1}{4} \left(\bar{\boldsymbol{\mathsf{S}}}_{g_0} - \bar{\lambda}_{g_0} \boldsymbol{\mathsf{T}}_{g_0} \right)^2 \right]^{1/2} + \frac{1}{2} \left(\bar{\boldsymbol{\mathsf{S}}}_{g_0} - \bar{\lambda}_{g_0} \boldsymbol{\mathsf{T}}_{g_0} \right) \right\}^{-1},$$

where

$$\bar{\mathbf{S}}_{g_0} = \mathbf{S}_{g_0} - \sum_{g \neq g_0} \frac{\lambda_{gg_0}}{n_{g_0}} (\mathbf{\Omega}_g - \mathbf{T}_g), \quad \text{and} \quad \bar{\lambda}_{g_0} = \frac{\sum_g \lambda_{gg_0}}{n_{g_0}}$$

イロト イヨト イヨト イヨト

E

Properties

Behavior

i.
$$\hat{\Omega}_g \succ \mathbf{0}$$
 for all $\lambda_{gg} \in (0, \infty)$;
ii. $\lim_{\lambda_{gg} \to 0^+} \hat{\Omega}_g = \mathbf{S}_g^{-1}$ if $\sum_{g' \neq g} \lambda_{gg'} = 0$ and $p \leq n_g$;
iii. $\lim_{\lambda_{gg} \to \infty} \hat{\Omega}_g = \mathbf{T}_g$ if $\lambda_{gg'} < \infty$ for all $g' \neq g$;
iv. $\lim_{\lambda_{g_1g_2} \to \infty} (\hat{\Omega}_{g_1} - \mathbf{T}_{g_1}) = \lim_{\lambda_{g_1g_2} \to \infty} (\hat{\Omega}_{g_2} - \mathbf{T}_{g_2})$ if $\lambda_{g'_1g'_2} < \infty$ for all $\{g'_1, g'_2\} \neq \{g_1, g_2\}$.

イロト イヨト イヨト イヨト

2

Block coordinate ascent

1: Input: 2: Sufficient data: $(S_1, n_1), ..., (S_G, n_G)$ 3: Penalty matrix: ∧ 4: Convergence criterion: $\varepsilon > 0$ 5: Output: 6: Estimates: $\hat{\Omega}_1, \ldots, \hat{\Omega}_G$ 7: procedure RIDGEP.FUSED($S_1, \ldots, S_G, n_1, \ldots, n_G, \Lambda, \varepsilon$) Initialize: $\hat{\Omega}_{\sigma}^{(0)}$ for all g. 8. for $c = 1, 2, 3, \dots$ do 9: for g = 1, 2, ..., G do 10. Update $\hat{\Omega}_{\sigma}^{(c)} := \hat{\Omega}_{\sigma}(\boldsymbol{\Lambda}, \hat{\Omega}_{1}^{(c)}, \dots, \hat{\Omega}_{\sigma-1}^{(c)}, \hat{\Omega}_{\sigma-1}^{(c-1)}, \dots, \hat{\Omega}_{\sigma-1}^{(c-1)})$ 11: end for 12. if $\max_{g} \left\{ \frac{\|\hat{\Omega}_{g}^{(c)} - \hat{\Omega}_{g}^{(c-1)}\|_{F}^{2}}{\|\hat{\Omega}_{x}^{(c)}\|_{F}^{2}} \right\} < \varepsilon$ then 13: return $(\hat{\Omega}_1^{(c)}, \dots, \hat{\Omega}_c^{(c)})$ 14: end if 15 end for 16: 17: end procedure

(日) (同) (三) (三)