

Directed Cyclic Mixed Graph Modeling for Omic Data Integration

Carel F.W. Peeters Dept. of Epidemiology & Biostatistics VU University medical center Amsterdam, The Netherlands cf.peeters@vumc.nl

> MRC Biostatistics Unit Cambridge Institute of Public Health Cambridge, UK October 5, 2016

Carel F.W. Peeters

Directed Cyclic Mixed Graph Modeling

MRC BSU, 05/10/2016, Cambridge 1 / 51

(日) (同) (三) (三)

Contributors

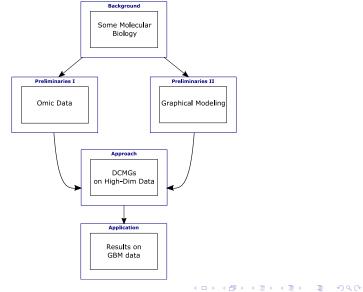
Wessel N. van Wieringen Dept. of Epimiology & Biostatistics, VUMC Dept. of Mathematics, VU University Amsterdam

Anders E. Bilgrau Novo Nordisk Dept. of Mathematical Sciences, Aalborg University

Mark A. van de Wiel Dept. of Epimiology & Biostatistics, VUMC Dept. of Mathematics, VU University Amsterdam

イロト イヨト イヨト イヨト

Outline



Carel F.W. Peeters

Directed Cyclic Mixed Graph Modeling

MRC BSU, 05/10/2016, Cambridge 3 / 51

Omics and Omics Data

-ome

A totality of some (molecular biological) sort

-omics

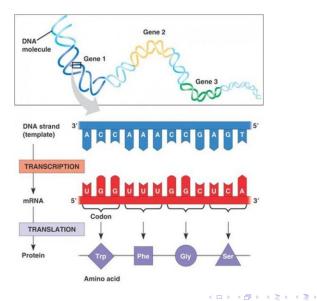
Collective quantification of some pool of molecular molecules

Genomics

The omics of the genome (of some organism)

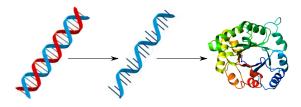
イロト イポト イヨト イヨト

Central Dogma Molecular Biology



э

The Omic Cascade

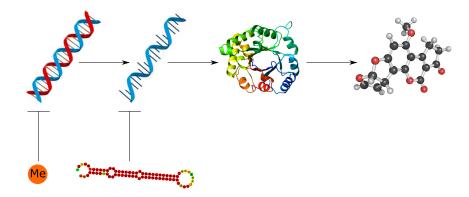


イロト イヨト イヨト イヨト

6 / 51

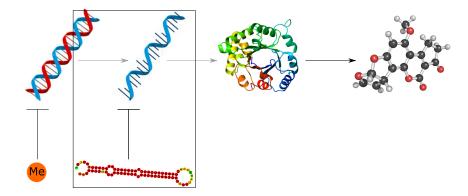
э

The Omic Cascade



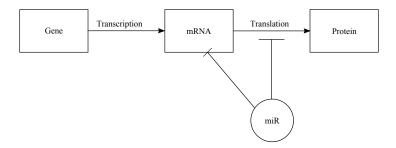
イロト イヨト イヨト イヨト

The Omic Cascade



イロト イヨト イヨト イヨト

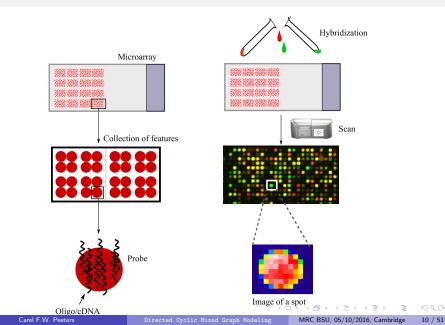
miRNA Epigenetics



micro RNA (miRNA)

- A family of small RNAs, approx. 22 nucleotides in length
- Bind to sequences of complementarity in target mRNA
- Post-transcriptional regulators of mRNA
- Logic: miRNA \uparrow GE \downarrow ; miRNA \downarrow GE \uparrow
- RNA degradation or limiting of RNA translation
- Implicated in cancer

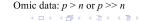
Array Data



Challenge: Dimensionality Omic Data

		Variables	Molecular features	
_		1 2 3 ····· <i>p</i>	1 2 3 4 5 · · · · · · p	_
Observations	1	$y_{11} \ y_{12} \ y_{13} \cdots y_{1p}$	$1 y_{11} y_{12} y_{13} y_{14} y_{15} \dots \dots y_{1p}$,
	2	Y ₂₁ Y ₂₂ Y ₂₃ ····· Y _{2p}	2 y ₂₁ y ₂₂ y ₂₃ y ₂₄ y ₂₅ y _{2p}	,
	3	y_{21} y_{22} y_{23} y_{2p} Interpretation y_{31} y_{32} y_{33} y_{3p} y_{3p} y_{3p} y_{41} y_{42} y_{43} y_{42} y_{4p} y_{4p}	3 y ₃₁ y ₃₂ y ₃₃ y ₃₄ y ₃₅ y _{3p}	
	4	$y_{41} y_{42} y_{43} \cdots y_{4p} $		
	5	Y ₅₁ Y ₅₂ Y ₅₃ · · · · · · Y _{5p}		
			$ \begin{array}{cccccccccccccccccccccccccccccccccccc$,
	÷		•	
	÷			
	÷			
	:			
	n	y _{n1} y _{n2} y _{n3} y _{np}		

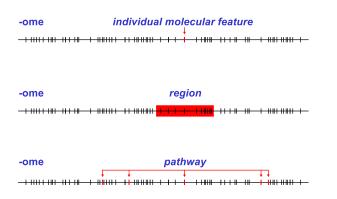
Regular data: n > p



2

11 / 51

Unit of Analysis



イロト イヨト イヨト イヨト

3

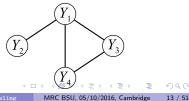
Gaussian Graphical Modeling

Graphical modeling

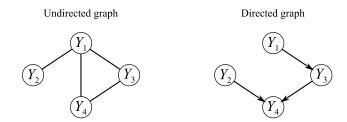
Class of models using graphs to express conditional (in)dependence relations between random variables

Gaussian setting

- Vertices: Correspond to random variables with normal distribution
- Edges: Correspond to the dependence structure
- Say $\mathbf{y} \sim \mathcal{N}_p(\mathbf{0}, \mathbf{\Sigma})$, and define $\mathbf{\Sigma}^{-1} \equiv \mathbf{\Omega}$. Then, for $a, b \in$ vertex set V, $a \neq b$



Undirected and Directed Graphs



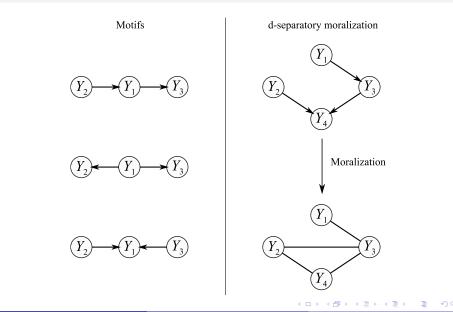
Directed Acyclic Graph (DAG)

$$\mathbf{y}_i := \mathbf{B}\mathbf{y}_i + \boldsymbol{\epsilon}_i, \quad i = 1, \dots, n.$$

イロト イヨト イヨト イヨト

æ

Directed Acyclic Graph (DAG)



Model and assumptions

Model

The SEM model we consider can be expressed as:

$$\mathbf{y}_i := \mathbf{B}\mathbf{y}_i + \mathbf{\Gamma}\mathbf{x}_i + \mathbf{I}_p \boldsymbol{\epsilon}_i, \qquad i = 1, \dots, n.$$

Assumptions

Properly preprocessed data

(a)
$$\mathbf{y}_i \perp \perp \mathbf{y}_{i'}, \forall i \neq i'$$

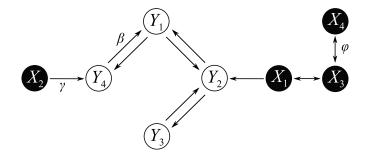
(a) $\boldsymbol{\epsilon}_i \sim \mathcal{N}_p(\mathbf{0}, \boldsymbol{\Psi}), \text{ with } \boldsymbol{\Psi} \equiv \text{diag}[\psi_{11}, \dots, \psi_{pp}], \text{ and } \psi_{jj} > 0, \forall j$
(a) $\mathbf{x}_i \sim \mathcal{N}_q(\mathbf{0}, \boldsymbol{\Phi}), \text{ with } \boldsymbol{\Phi} \succ 0$

$$\mathbf{S} \mathbf{x}_i \perp \mathbf{\epsilon}_{i'}, \forall i, i'$$

(\mathbf{I}_{p} - **B**) is nonsingular and $\beta_{jj} = 0, \forall j$

イロト イヨト イヨト イヨト

Graphical Representation: DCMG

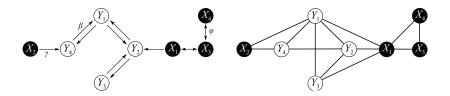


イロト イヨト イヨト イヨト

2

m-Separation

Stretching the idea of the collider



イロト イヨト イヨト イヨト

æ

Some Results

Model-implied precision matrix

 $\begin{array}{l} \mathsf{Let} \ \mathbf{y}_i := \mathbf{B} \mathbf{y}_i + \mathbf{\Gamma} \mathbf{x}_i + \mathbf{I}_{p} \varepsilon_i \ \text{be a SEM model satisfying assumptions 2-6. Define} \\ \mathbf{\Theta} \equiv \{\mathbf{B}, \mathbf{\Gamma}, \Psi, \Phi\}. \ \text{Then} \ [\mathbf{y}_i^{\mathrm{T}}, \mathbf{x}_i^{\mathrm{T}}]^{\mathrm{T}} \sim \mathcal{N}_{(p+q)}[\mathbf{0}, \boldsymbol{\Sigma}(\boldsymbol{\Theta})], \ \text{with} \\ \mathbf{\Sigma}(\boldsymbol{\Theta})^{-1} \equiv \boldsymbol{\Omega}(\boldsymbol{\Theta}) = \left[\begin{array}{c} \boldsymbol{\Omega}(\boldsymbol{\Theta})_{yy} & \boldsymbol{\Omega}(\boldsymbol{\Theta})_{yx} \\ \boldsymbol{\Omega}(\boldsymbol{\Theta})_{xy} & \boldsymbol{\Omega}(\boldsymbol{\Theta})_{xx} \end{array} \right] = \left[\begin{array}{c} (\mathbf{I}_p - \mathbf{B})^{\mathrm{T}} \Psi^{-1} (\mathbf{I}_p - \mathbf{B}) & -(\mathbf{I}_p - \mathbf{B})^{\mathrm{T}} \Psi^{-1} \mathbf{\Gamma} \\ -\mathbf{\Gamma}^{\mathrm{T}} \Psi^{-1} (\mathbf{I}_p - \mathbf{B}) & \Phi^{-1} + \mathbf{\Gamma}^{\mathrm{T}} \Psi^{-1} \mathbf{\Gamma} \end{array} \right] \end{array}$

Identification by symmetric nonrecursion

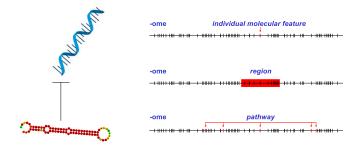
If we assume that $\beta_{jk} = \beta_{kj} \ \forall j \neq k$, the model is (at least) locally identified

DCMG as graphical object

Assuming faithfulness, a perfect mapping can be shown

(日) (同) (三) (三)

Step 1: Regularization



Setting

- Let $\hat{\boldsymbol{\Sigma}}$ denote the sample covariance matrix on \mathbf{y}_i and \mathbf{x}_i
- When (p+q)
 ightarrow n: $\hat{m{\Sigma}}$ is ill-behaved and $\hat{m{\Omega}} = \hat{m{\Sigma}}^{-1}$ is unstable
- When (p+q)>n: $\hat{\pmb{\Sigma}}$ is singular and $\hat{\pmb{\Omega}}=\hat{\pmb{\Sigma}}^{-1}$ is undefined

イロト イポト イヨト イヨ

Step 1: Regularization

Maximize

$$\underbrace{\mathsf{ln} \, |\boldsymbol{\Omega}| - \mathsf{tr}(\hat{\boldsymbol{\Sigma}}\boldsymbol{\Omega})}_{\mathrm{log-likelihood}} - \underbrace{\frac{\lambda}{2} \|\boldsymbol{\Omega} - \boldsymbol{\mathsf{T}}\|_2^2}_{\ell_2 - \mathrm{penalty}}$$

- T denotes a p.d. symmetric target matrix
- $\lambda \in (0,\infty)$ denotes a penalty parameter

Analytic penalized ML estimator

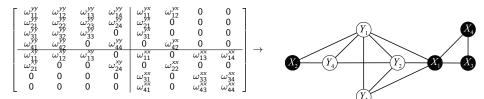
$$\hat{\boldsymbol{\Omega}}(\lambda) = \left\{ \left[\lambda \boldsymbol{\mathsf{I}}_{(p+q)} + \frac{1}{4} (\hat{\boldsymbol{\Sigma}} - \lambda \boldsymbol{\mathsf{T}})^2 \right]^{1/2} + \frac{1}{2} (\hat{\boldsymbol{\Sigma}} - \lambda \boldsymbol{\mathsf{T}}) \right\}^{-1}$$

イロト イポト イヨト イヨト

Step 2: Determine Support

Sparsified regularized precision

- Test for vanishing partial correlations to obtain $\hat{\mathbf{\Omega}}(\lambda)^0$
- A sparse representation of $\hat{\Omega}(\lambda)$
- Local false discovery rate procedure



A 10

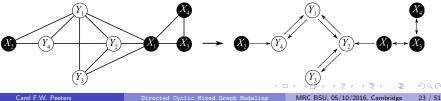
Step 3: Find DCMG

Parameter retrieval

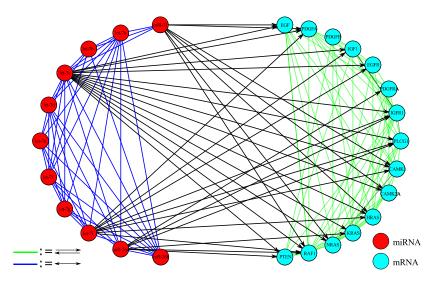
- From $\hat{\Omega}(\lambda)^0$ we find $\hat{\Theta}$ such that $\Omega(\hat{\Theta})$ is as close as possible to $\hat{\Omega}(\lambda)^0$
- Inverse variance lemma and identification proposition imply simple iterative algorithm

Solving for Parameters

$$\begin{aligned} \left(\mathbf{I}_{p}-\mathbf{B}\right) &= \Psi\left[\Psi^{-1}\Omega(\boldsymbol{\Theta})_{yy}\right]^{1/2} \\ \mathbf{\Gamma} &= -(\mathbf{I}_{p}-\mathbf{B})\Omega(\boldsymbol{\Theta})_{yy}^{-1}\Omega(\boldsymbol{\Theta})_{yx} \\ \Psi &= \left[(\mathbf{I}_{p}-\mathbf{B})\Omega(\boldsymbol{\Theta})_{yy}^{-1}(\mathbf{I}_{p}-\mathbf{B})\right] \circ \mathbf{I}_{p} \end{aligned}$$



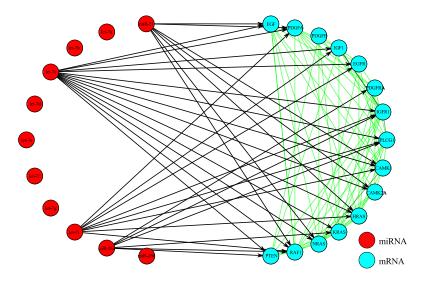
Full DCMG



イロト イヨト イヨト イヨト

- 2

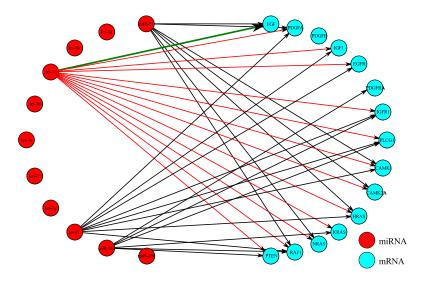
Endogenous Relations



<ロ> (日) (日) (日) (日) (日)

2

Exogenous Shocks



2

<ロ> (日) (日) (日) (日) (日)

Carel F.W. Peeters

References

- Koster, J.T.A. (1996) Markov Properties of Nonrecursive Causal Models. *Annals of Statistics*, 24:2148
- Pearl, J. (2009, 2nd ed.) Causality: Models, reasoning, and inference. Cambridge, UK: Cambridge University Press
- Richardson, T. (2003). Markov properties for acyclic directed mixed graphs. Scandinavian Journal of Statistics, 30: 145 157.
- Schäfer, J., & K. Strimmer (2005) A shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics. *Statistical Applications in Genetics and Molecular Biology*, 4:32

イロト イヨト イヨト イヨト

References

Software

 Peeters, C.F.W., Bilgrau, A.E., & van Wieringen, W.N. (2016). "rags2ridges: Ridge Estimation of Precision Matrices from High-Dimensional Data". R package, version 2.1.1 URL: https://cran.r-project.org/package=rags2ridges.

Theory/Methodology

- Peeters*, C.F.W., Bilgrau*, A.E., Eriksen, P.S., Boegsted, M., & van Wieringen, W.N. (2015). "Targeted Fused Ridge Estimation of Inverse Covariance Matrices from Multiple High-Dimensional Data Classes". arXiv:1509.07982v1 [stat.ME].
- Peeters, C.F.W., van Wieringen, W.N., & van de Wiel, M.A. (in preparation). "Directed Cyclic Mixed Graph Modeling for High-Dimensional Omic Data Integration".
- van Wieringen, W.N. & Peeters, C.F.W. (2016). "Ridge Estimation of Inverse Covariance Matrices from High-Dimensional Data". Computational Statistics & Data Analysis, 103: 284-303. arXiv:1403.0904v3 [stat.ME].

Computation

- Peeters, C.F.W., van de Wiel, M.A., & van Wieringen, W.N. (2016) "The Spectral Condition Number Plot for Regularization Parameter Determination". arXiv:1608.04123v1 [stat.CO].
- van Wieringen, W.N. & Peeters, C.F.W. (2015). "Application of a New Ridge Estimator of the Inverse Covariance Matrix to the Reconstruction of Gene-Gene Interaction Networks". In: di Serio, C., Lio, P., Nonis, A., and Tagliaferri, R. (Eds.) 'Computational Intelligence Methods for Bioinformatics and Biostatistics'. Lecture Notes in Computer Science, vol. 8623. Springer, pp. 170–179.

Carel F.W. Peeters

Directed Cyclic Mixed Graph Modeling MRC BSU, 05/10/2016, Cambridge 29 / 51

・ロト ・回ト ・ヨト ・ヨト

2

"Get ridge or die trying"

- 2Cent

