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Background: Some Molecular Biology

Omics and Omics Data

-ome

A totality of some (molecular biological) sort

-omics

Collective quantification of some pool of molecular molecules

Genomics

The omics of the genome (of some organism)
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Background: Some Molecular Biology

Central Dogma Molecular Biology
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The Omic Cascade
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Background: Some Molecular Biology

The Omic Cascade
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Background: Some Molecular Biology

miRNA Epigenetics

TranslationTranscription
Gene mRNA

miR

Protein

micro RNA (miRNA)

A family of small RNAs, approx. 22 nucleotides in length

Bind to sequences of complementarity in target mRNA

Post-transcriptional regulators of mRNA

Logic: miRNA ↑ GE ↓; miRNA ↓ GE ↑
RNA degradation or limiting of RNA translation

Implicated in cancer
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Preliminaries I: Omic Data

Array Data
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Preliminaries I: Omic Data

Challenge: Dimensionality Omic Data
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Preliminaries I: Omic Data

Unit of Analysis
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Preliminaries II: Graphical Modeling

Gaussian Graphical Modeling

Graphical modeling

Class of models using graphs to express conditional (in)dependence relations
between random variables

Gaussian setting

Vertices: Correspond to random variables with normal distribution

Edges: Correspond to the dependence structure

Say y ∼ Np(0,Σ), and define Σ−1 ≡ Ω. Then, for a, b ∈ vertex set V ,
a 6= b

− ωab√
ωaaωbb

= 0⇐⇒ ωab = 0⇐⇒ a ⊥⊥ b|V \ {a, b} ⇐⇒ a 6− b


ω11 ω12 ω13 ω14

ω21 ω22 0 0
ω31 0 ω33 ω34

ω41 0 ω43 ω44


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Preliminaries II: Graphical Modeling

Undirected and Directed Graphs

Directed Acyclic Graph (DAG)

yi := Byi + εi , i = 1, . . . , n.
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Preliminaries II: Graphical Modeling

Directed Acyclic Graph (DAG)
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Approach: Directed Cyclic Mixed Graphs

Model and assumptions

Model

The SEM model we consider can be expressed as:

yi := Byi + Γxi + Ipεi , i = 1, . . . , n.

Assumptions

1 Properly preprocessed data

2 yi ⊥⊥ yi′ ,∀i 6= i ′

3 εi ∼ Np(0,Ψ), with Ψ ≡ diag[ψ11, . . . , ψpp], and ψjj > 0, ∀j
4 xi ∼ Nq(0,Φ), with Φ � 0

5 xi ⊥⊥ εi′ ,∀i , i ′

6 (Ip − B) is nonsingular and βjj = 0, ∀j
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Approach: Directed Cyclic Mixed Graphs

Graphical Representation: DCMG
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Approach: Directed Cyclic Mixed Graphs

m-Separation

Stretching the idea of the collider

−→ ←−
−→ ←→
←→ ←→
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Approach: Directed Cyclic Mixed Graphs

Some Results

Model-implied precision matrix

Let yi := Byi + Γxi + Ipεi be a SEM model satisfying assumptions 2-6. Define
Θ ≡ {B,Γ,Ψ,Φ}. Then [yT

i ,x
T
i ]T ∼ N(p+q)[0,Σ(Θ)], with

Σ(Θ)−1 ≡ Ω(Θ) =

[
Ω(Θ)yy Ω(Θ)yx
Ω(Θ)xy Ω(Θ)xx

]
=

[
(Ip − B)TΨ−1(Ip − B) −(Ip − B)TΨ−1Γ
−ΓTΨ−1(Ip − B) Φ−1 + ΓTΨ−1Γ

]
.

Identification by symmetric nonrecursion

If we assume that βjk = βkj ∀j 6= k, the model is (at least) locally identified

DCMG as graphical object

Assuming faithfulness, a perfect mapping can be shown
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Approach: Learning Directed Cyclic Mixed Graphs

Step 1: Regularization

Setting

Let Σ̂ denote the sample covariance matrix on yi and xi

When (p + q)→ n: Σ̂ is ill-behaved and Ω̂ = Σ̂−1 is unstable

When (p + q) > n: Σ̂ is singular and Ω̂ = Σ̂−1 is undefined
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Approach: Learning Directed Cyclic Mixed Graphs

Step 1: Regularization

Maximize

ln |Ω| − tr(Σ̂Ω)︸ ︷︷ ︸
log−likelihood

− λ

2
‖Ω− T‖22︸ ︷︷ ︸
`2−penalty

T denotes a p.d. symmetric target matrix

λ ∈ (0,∞) denotes a penalty parameter

Analytic penalized ML estimator

Ω̂(λ) =

{[
λI(p+q) +

1

4
(Σ̂− λT)2

]1/2
+

1

2
(Σ̂− λT)

}−1
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Approach: Learning Directed Cyclic Mixed Graphs

Step 2: Determine Support

Sparsified regularized precision

Test for vanishing partial correlations to obtain Ω̂(λ)0

A sparse representation of Ω̂(λ)

Local false discovery rate procedure



ωyy
11 ωyy

12 ωyy
13 ωyy

14 ωyx
11 ωyx

12 0 0
ωyy

21 ωyy
22 ωyy

23 ωyy
24 ωyx

21 0 0 0
ωyy

31 ωyy
32 ωyy

33 0 ωyx
31 0 0 0

ωyy
41 ωyy

42 0 ωyy
44 0 ωyx

42 0 0
ωxy

11 ωxy
12 ωxy

13 0 ωxx
11 0 ωxx

13 ωxx
14

ωxy
21 0 0 ωxy

24 0 ωxx
22 0 0

0 0 0 0 ωxx
31 0 ωxx

33 ωxx
34

0 0 0 0 ωxx
41 0 ωxx

43 ωxx
44


→
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Approach: Learning Directed Cyclic Mixed Graphs

Step 3: Find DCMG

Parameter retrieval

From Ω̂(λ)0 we find Θ̂ such that Ω(Θ̂) is as close as possible to Ω̂(λ)0

Inverse variance lemma and identification proposition imply simple
iterative algorithm

Solving for Parameters

(Ip − B) = Ψ[Ψ−1Ω(Θ)yy ]1/2

Γ = −(Ip − B)Ω(Θ)−1
yy Ω(Θ)yx

Ψ = [(Ip − B)Ω(Θ)−1
yy (Ip − B)] ◦ Ip
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Application: Glioblastoma Multiforme

Full DCMG
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Application: Glioblastoma Multiforme

Endogenous Relations
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Application: Glioblastoma Multiforme

Exogenous Shocks
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