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Omics and Omics Data
-ome

A totality of some (molecular biological) sort
-omics

Collective quantification of some pool of molecular molecules
Genomics

The omics of the genome (of some organism)
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Background: Some Molecular Biology
Central Dogma Molecular Biology
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Background: Some Molecular Biology

The Omic Cascade
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The Omic Cascade

Background: Some Molecular Biology
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The Omic Cascade

Background: Some Molecular Biology
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Background: Some Molecular Biology

miRNA Epigenetics

Gene

Transcription

micro RNA (miRNA)

o A family of small RNAs, approx. 22 nucleotides in length

Y

mRNA

Translation

Protein

@ Bind to sequences of complementarity in target mRNA

o Post-transcriptional regulators of mRNA
o Logic: miRNA 1 GE |; miRNA | GE 1

o RNA degradation or limiting of RNA translation

@ Implicated in cancer
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Array Data

‘ Hybridization

Microarray

Collection of features

i

Probe

Image of a spot

Oligo/cDNA
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Preliminaries I: Omic Data

Challenge: Dimensionality Omic Data

Variables Molecular features
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Regular data: n>p Omic data: p>norp>>n
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Unit of Analysis
-ome

individual molfcular feature
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-ome region
-ome pathway
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Gaussian Graphical Modeling

Graphical modeling

Class of models using graphs to express conditional (in)dependence relations
between random variables

Gaussian setting
@ Vertices: Correspond to random variables with normal distribution
o Edges: Correspond to the dependence structure
o Say y ~ N,(0,X), and define T~! = Q. Then, for a, b € vertex set V,
a#£b
Wab

————=0<=wap=0<=all bV \{a,b} < a#b
v/ WaaWbb

Wil W12 W13 W4
wa wx 0 0

w1 0 w3z w
war 0 w3z was
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Preliminaries II: Graphical Modeling

Undirected and Directed Graphs

Undirected graph Directed graph

Directed Acyclic Graph (DAG)

yi;:Byi—i—e,-, i:l,...,n.
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Directed Acyclic Graph (DAG)

Motifs d-separatory moralization

e G @ Moralization
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Approach: Directed Cyclic Mixed Graphs

Model and assumptions

Model

The SEM model we consider can be expressed as:

y; = By; +I'x; + €, i=1,...,n.

Assumptions
© Properly preprocessed data
Oy Ly, Vil
Q € ~ N,(0,W), with W = diag[i)11, . . ., ¥pp], and 20 > 0,V
Q x; ~ Ny(0,®), with ® =0
Q x; Il ey, Vi, i
@ (I, — B) is nonsingular and 3 = 0,V

[m] = =
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Approach: Directed Cyclic Mixed Graphs

Graphical Representation: DCMG
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Approach: Directed Cyclic Mixed Graphs

m-Separation

Stretching the idea of the collider
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Approach: Directed Cyclic Mixed Graphs

Some Results

Model-implied precision matrix
Let y; := By, + I'x; + l,€; be a SEM model satisfying assumptions 2-6. Define
© = {B,I,W,0}. Then [y, x]]" ~ Npiq[0, Z(O)], with

_ Qe Q(0),, 1, —B)Tw~l(1,-B) —(,-B)TwIr
=(0) ' = 2(e) = [ Q§@§i§ QE@%L ]:[ (p—rTZIFI(Ip(—P B) ) m(*p1+r)Ttr1r }

.

Identification by symmetric nonrecursion

If we assume that Bjx = Bk Vj # k, the model is (at least) locally identified

DCMG as graphical object

Assuming faithfulness, a perfect mapping can be shown
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Approach: Learning Directed Cyclic Mixed Graphs

Step 1: Regularization

-ome individual moﬁecular feature

-

-ome region
— - I+ —H— - ——
-ome pathway

¥

::}3331 3 ! T 1}
"oy —HHHHHH—HHH— A —
i

Setting

o Let ¥ denote the sample covariance matrix on y; and x;
e When (p+ g) — n: ¥ is ill-behaved and = £ is unstable

e When (p+ g) > n: ¥ is singular and @ = £ is undefined
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Approach: Learning Directed Cyclic Mixed Graphs

Step 1: Regularization

Maximize

cor A
In|Q| - er(£2) - 22 - T3
~—_—————

log—likelih
og—likelihood £ —penalty

@ T denotes a p.d. symmetric target matrix

@ ) € (0,00) denotes a penalty parameter

Analytic penalized ML estimator

A 1 4 5 1/2 1 . -1
Q) = { [/\l(p+q) +7(E-2T) +5(E- AT)}
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Step 2: Determine Support

Sparsified regularized precision

@ Test for vanishing partial correlations to obtain Q(A)O

o A sparse representation of ()

o Local false discovery rate procedure

wﬁ wy wig w% wﬁ wl3 0 0
w% w u.);9 Wiy w%} 0 0
w3 Wy Wiy 0 w3y 0 0 0
W Wf 6 W |6 W o o |
w}(i wiy Wi Oxy Wiy 9<x w3 Wiy
wy 0 0wy OXX wp 0 (ix
0 0 0 0 way 0 wig Wiy
0 0 0 0 wy1 0 Wy Wiy
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Step 3: Find DCMG

Parameter retrieval

o From ©())° we find © such that 2(©) is as close as possible to Q(\)°

@ Inverse variance lemma and identification proposition imply simple
iterative algorithm

Solving for Parameters

(1,—B) = WWw'Q@O),]"?
r = —(I, - B)2(®),'Qd),
v = [(I,-B)Q®), (I, -B)ol,
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2 Cents

“Get ridge or die trying”
- 2Cent

N R i "
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