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This supplement is structured as follows: Section 1 gives alternative updating schemes
for obtaining the precision estimates. Section 2 gives details on estimation in certain special
cases. Section 3 derives an approximation to the fused leave-one-out cross-validation score.
Section 4 gives the remainder of the results for Simulation Scenario 2. Section 5 gives the
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remainder of the results for Simulation Scenario 5. Last, Section 6 gives the remainder of
the results for Simulation Scenario 6.

1. Alternative Fused Ridge Solutions

This section derives two equivalent (in terms of Equation 7) alternative updating schemes to
(8). The motivation for the exploration of these alternative recursive estimators is twofold.
First, alternative recursions can exhibit differing numerical (in)stability for extreme values of
the penalty matrix A = [y, g,]. Second, they provide additional intuition and understanding
of the targeted fused ridge estimator.

The general strategy to finding the alternatives is to rewrite the gradient equation (27)
into the non-fused form (28), which we will repeat here:

- Sgo - )‘go (ng_ Tgo) =0, (Sl)

Where Ago> Tgo, and Sy, do not depend on ng Note that an explicit closed-form solution
o (S1) exists in the form of (7).

1.1 First Alternative

The first alternative scheme is straightforward. Rewrite (27) to

= ”goﬂ_ NgySgy — )‘go-(ﬁgo —Tg) + Z Aggo (29— Tg) (S2)
g#go

. N A
= ngoﬂgol — NgySgy — Agoe § 2go— [Tgo + Z /\ggo (Qg_ Tg)] )
9790 goe

where \jjo = Zg Aggo- In terms of (S1), we thus have the updating scheme given in equation
(9). As stated in the main text, it has the intuitive interpretation that a fused class target is
used which is a combination of the class-specific target and the ‘target corrected’ estimates
of remaining classes.

1.2 Second Alternative

We now derive a second alternative recursion scheme. Add and subtract Ag,e )
o (S2) and rewrite such that:

97#90 )‘990 Qg7

0= ngoﬁgiol* NgySgo — )‘goi(ﬂgo —Tygo) + Agoe Z Aggo§2g + Z Aggo (29— Tg) — Agge Z Aggo§2g
9#90 9#90 9#90
e L D DEV ] D BEWICIED SRS ISP PV ¥
9790 97#90 9790 9790

= ngoﬂgol_ Tgo Sgo - )‘go° [ng - (Tgo + Z Aggoﬂg)] - Z )‘ggoT{J go' Z AQ‘ZOQ

9790 97#90 9790

qqu ] Agoe [9 - (TQ0 + > ,\ggoﬂg>] )

90 g#g0 9790 9#90

= Ny Qg—ol — Nygo [Sgo + Age1 Z Aggo§2g + Z
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Dividing by ng, gives

A Agoe—1 A Agoe | A
0= 9901 — |Se0 + g:Lg Z Aggo§2g + Z ngggo Tg] - =% [ﬂgo - (Tgo + Z Aggo“y)] )
0 0

9790 9790 Mg 9790
which brings the expression to the desired form (S1) with the updating scheme

= Agoge—1 A - < Agoe
Sg0 = Sgo + —et— Z Aggo§2g + Z %Tw Tgy =Ty, + Z AggoSlg, and Ay, = ~ot,
90

n n
90 g#g0 9790 9790 90

Again, a solution for ng with fixed €, for all g # go, is available through Lemma 8 (van
Wieringen and Peeters, 2016) and is given in (7).

1.3 Motivation

Though seemingly more complicated, these alternative updating schemes can be numerically
more stable for extreme penalties. In both alternatives, we see that Sgo is positive semi-
definite for (nearly) all very large and very small penalties. Likewise, Tgo is always positive
definite. Compare the alternative expressions to the updating scheme given by (8) which can
be seen to be numerically unstable for very large penalties: For very large Agq or Ay 4, the
Sy, in (8) may be a matrix with numerically extreme values. This implies ill-conditioning
and numerical instability under finite computer precision. On the other hand, ‘updating’
the target matrix will generally lead to updates for which the resulting estimator is not

rotationally equivariant. This implies a reduction in computational speed.

2. Estimation in Special Cases

Here we explore scenarios for which we arrive at explicit targeted fused ridge estimators.
These explicit solutions further insight into the behavior of the general estimator and they
can provide computational speed-ups in certain situations. Three special cases are covered:

L Agy =0 for all g # ¢ or equivalently >° , Agy = Age = Agg for all g;
II. 21 =---=Qg and Ty, =T for all g;
III. Ty =T for all g, Agg = A for all g, Ay 4, = Ay for all g1 # g2, and Ay — c0™.

2.1 Special Case 1

When >, Agy = Age = Agg for all g, we have that >, Agy =D, Agg = 0 for all g.
Hence, all fusion penalties are zero. The zero gradient equation (27) for class g then no
longer hinges upon information from the remaining classes ¢’. The targeted fused precision
estimate for class g then reduces to (29) of Corollary 11. This case thus coincides, as
expected, with obtaining G decoupled non-fused ridge precision estimates. A special case
that results in the same estimates occurs when considering Ay 4, = Ay for all g1 # g2 and
Ay is taken to be 0.
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2.2 Special Case 11

Suppose 2, = © and T, = T for all g. Consequently, the fusion penalty term vanishes
irrespective of the values of the Ay, g,, g1 # g2. The zero gradient equation (27) then reduces
to

N

0=nyQ 1 —nySy — \y(Q2—T),

for each class g. Adding all G equations implies:

G G G
Ozz:ngfl_l—z:ngsg— Z)\gg (Q—T)
g=1 g=1 g=1
= 1o — neSe — tr(A) (2 — T)
S [s ]0g -

We recognize that (S3) is of the form (22). Lemma 8 may then be directly applied to obtain
the solution:

) 1 2y -1
Q(A) = { [)\*Ip + (8. - )\*T)Q} +5(Se - )\*T)} : (S4)

where \* = tr(A)/ne. Hence, this second special case gives a non-fused penalized estimate
that uses the pooled covariance matrix. It can be interpreted as an averaged penalized
estimator. It is of importance in testing equality of the class precision matrices (see Section
4.1 of the main text).

2.3 Special Case 111

Suppose that Ty = T for all g, that A\jy = A for all g, and that A\ 4, = Ay for all g; # go.
The main optimization problem then reduces to (6). Clearly, for A\ — co™ the fused penalty

A A
PR AT = 53 19— T+ 5 3 ([0~ 90)] 15
g 91,92

is minimized when 2 = Q9 = --- = Qg. This is also implied, more rigorously, by
Corollary 13. Hence, the problem reduces to the special case of section 2.2 considered
above. The solution to the penalized ML problem when Ay = oo is then given by (S4)
where tr(A) now implies G\.

3. Fused Kullback-Leibler Approximate Cross-Validation
3.1 Motivation

In ¢;-penalized estimation of the precision matrix, penalty selection implies (graphical)
model selection: Regularization results in automatic selection of conditional dependencies.
One then seeks to select an optimal value for the penalty parameter in terms of model
selection consistency. To this end, the Bayesian information criterion (BIC), the extended
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BIC (EBIC), and the stability approach to regularization selection (StARS) are appropriate
(Liu et al., 2010). The (fused) ¢2-penalty will not directly induce sparsity in precision matrix
estimates. Hence, in fo-penalized problems it is natural to choose the penalty parameters
on the basis of efficiency loss. Of interest are then estimators of the Kullback-Leibler
(KL) divergence, such as LOOCV, generalized approximate cross-validation (GACV), and
Akaike’s information criterion (AIC). While superior in terms of predictive accuracy due
to its data-driven nature, the LOOCYV is computationally very expensive. Vujaci¢ et al.
(2015) proposed a KIL-based CV loss with superior performance to both AIC and GACV.
The proposed method has closed-form solutions and thus provides a fast approximation to
LOOCYV. Here, we extend this method to provide a computationally friendly approximation
of the fused LOOCYV score.

3.2 Formulation

Following Vujaci¢ et al. (2015), we now restate the KL approximation to LOOCYV in the
fused ridge setting. Let the true precision matrix for class g be denoted by €2,. Its estimate,
shorthanded by Qg can be obtained through Algorithm 1. The KL divergence between the
multivariate normal distributions N, (0, Qg_l) and N, (0, Q;l) can be shown to be:

1 qa 1A
KL(8, Q) = 5 { (25 €2) — 2| - p .

For each g we wish to minimize this divergence. In the fused case we therefore consider the
fused Kullback-Leibler (FKL) divergence which, motivated by the LOOCV score, is taken
to be a weighted average of KL divergences:

FKL({Qg} {€})
1 G
—anKL (2, €2,) ; 2{ ) — In|Q, '€y | - } (S5)

The FKL divergence (S5) can, using the likelihood (3), be rewritten as

1 A 1
FKL = ——L({Qg}; {Sy}) + bias, where bias = 5
Te

G
- an tr[ﬂg(ﬂgl — Sg)],
. g=1

and where the equality holds up to the addition of a constant. It is clear that the bias
term depends on the unknown true precision matrices and thus needs to be estimated. The
fused analogue to the proposal of Vujaci¢ et al. (2015), called the fused Kullback-Leibler
approximate cross-validation score or simply approxzimate fused LOOCYV score, then is

FRL(A) = - £({9,}: {S,}) + Dias, (S6)
with
— G 9 A — A~ 2
bias = Z Z{ylg 92 )yig + )\gy;(ﬂg — Qg)ym}a (S7)
g 14=1
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Age

and where )\g = The derivation of this estimate is given in Section 3.3 below. One

would then choose A* such that the FKL approximate cross-validation score is minimized:

A* = arg minPﬁ(A), subject to: A > 0 A diag(A) > 0. (S8)
A

The closed form expression in (S6) implies that A* is more rapidly determined than A*.
As seen in the derivation, A* ~ A* for large sample sizes.

3.3 Derivation

Here we give, borrowing some ideas from Vujacié¢ et al. (2015), the derivation of the estimate
(56). Let observation i in class g be denoted by y,, and let S = S;; = yl-gy;;] be the
sample covariance or scatter matrix of that observation. As before, the singularly indexed
S, = nig Z?:q 1 Sig is the class-specific sample covariance matrix. Throughout this section
we will conveniently drop (some of) the explicit notation.

The FKL divergence reframes the LOOCYV score in terms of a likelihood evaluation and
a bias term when S is not left out of class g. We thus study the change in the estimate as
function of the single scatter matrix S. Let §2,(S) = Q," be the estimate in class g when

S is omitted. That is, Qg(S) is part of the solution to the system

Q! + ftaa + La=glS + >y + Ay =0, forall a=1,...,G, (9)
b#a

where g, = );L‘", Lap = %, and where A, is a matrix determined by the remaining data,

penalty parameters and targets. Note that the penalized MLE can be denoted Qg =Q ¢(0),
which corresponds to the ‘full’ estimate resulting from the full gradlent equation (27).
We wish to approximate 2 ¢(S) by a Taylor expansion around O 4(0), ie.:

. R o0,
Q,(S) = 24(0) + 75]’]”
9555

Differentiating (S9) w.r.t. Sj;, the (j,j')th entry in S, and equating to zero yields

o, o, oY,
Q ! Q aa 4 a
T 95, u 53, ~ Ha=dl JJ*'%%‘Lbas
L O A oY, o
SR 0 Jati o Sl b= + 1a=g|E;», for all ! S10
a 8Sjj/ a +zb::u basjjl + [a g] 75 or a 17 ( )

where Ej;/ is the null matrix except for unity in entries (j, j') and (j’,). The third term
is obtained as 9S/0S;;; = E;j» by the symmetric structure of S. This is also seen from the
fact that S =3, Sy E;j. Let

o,

V(S), = 95,5

TR

7’
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and multiply (S10) by S;;» and sum over all j, j' to obtain

~

Q,'V(8)a, " =) paV(S)y = Lfa=g]S, forall a=1,...,G. (S11)
b

a

We seek the solution vector V = {V(S)CL}EZ1 of square matrices for the system of equations
in (S11) which can be rewritten in the following way. Introduce and consider the linear
operator (or block matrix):

Q;l ®f2;1 — praalpy @ L, if a=0b

N={N_,l¢ . where N, = .
{ ab}a,bfl ab {_Mablp@)lp o a;ﬁb

Then V can be verified to be the solution to the system (S10) as

N(V)a=> NguV(8),=0 for a#g, and
b

N(V), = ZNgbV(S)b =S for a=g.
b

Hence we need to invert N to solve for V. The structure of N is relatively simple, but there
seems to be no (if any) simple inverse. Note that N = D — M is the difference of a (block)
diagonal matrix D and a matrix M depending on the u’s:

D, = Q'@ Q.
My = Napr ® Ip-
In terms of the u’s we obtain to first order that
N!'l=D-M)'~D'!'+D'MD,

yielding the approximation

Qy(S) ~ Qy + (g @ Qg + 11522 @ 2)(S)
= Qg + QS + 1, 2SN2, (S12)

where €, = (0). To a first order in pg, this is the same as the approximation

N

Qy(S) = Qy + (0,1 @ Q1 — pgel, ® L) 71(S).
We also need an approximation for ln|Qg(S)\. By first-order Taylor expansion around
S = 0 we have
A A A1 8Qg
Inj 2, (S)] ~ €, (0)] + > tr[ €21 (0) 5| 5
5.5 2

<SL21 A A—1(A A A2 o O2
~ In|Qy(0)] + tr| 2, (g @ Qg + 119482 @ Q) (S)

= In|€2y(0)| + tr (S + 114,Q2SN2), (S13)



BILGRAU & PEETERS ET AL.

where we have used that < ln\A( )| = tr[A(t)” 1%] and 5o

(Qg ® Qg + Nggﬂg ®
Qg)( jj7)- We now have the necessary equations to derive the FKL approximate cross-
validation score.
Define

f(A,B) = In|B| — tr(BA)

(S14)
by which the identity
Tig
Z f(Sig: Qg) = ngf(Sg, Q) (S15)
=1
holds for all g. The full likelihood (3) in terms of f is given by
“n “ n
LUR Y {Sg}) o Y 2 {0 —r(28,) | = Y Z2F(S,, ), (S16)
g=1 g=1
while the likelihood of a single S;; is
1 1
Lig(£2g; Sig) o i{ln 92| — tr(ﬂgsig)} = gf(siwﬂg)- (S17)

In our setting, the fused LOOCYV score is given by:

G ng
LOOCV = —722% (€2,79:S5)
Mo i1
(17) gG o
S 3 SEVERE S
° g=11i=1

1 G

_77.2 % Z[f(sig’ﬂg) + f(Si’g’Q;ig) - f(sigvﬂg)}

G Mg
i*nizngf *%Z% { ig> ;lg)*f(smﬂg)}
g=1 i=1
(S16) 1 G & R
R UNHERIEETS 9 SIFICH ROEFICHE B
g:l i=1
(S14) 1 G A A
L L5 (8)) - o 0D (i) - tr(6098,,) — Inlfy |+ tr(€2,Si)].

Il
—
.
Il
-

g9

Now, substitution of (S12) and (S13) gives the FKL approximate cross-validation score as
an approximation to the fused LOOCYV score:

G n
1 g

LOOCV ~ FKL = —7c({ng} {S,}) +

glzl
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where

tr (S + 11502 SN?) — tr(SQ + 114,Q2SQ?)

tr (€2 SQ) + f1gg tr(Q2SN?) — tr(SQ) — pugq tr(QSQ?)

tr(S ) + lgg tr(SQ ) — tr(SQ) — Ugg tr(SQ?’)

tr[S(Q% — )] + g tr[S(Q — 0%)]

= ¥ig(Q° = Q)y iy + 1ggy iy (R — )y, (S18)

To arrive at (S18) we have used the linear and cyclic properties of the trace operator. As
S = ylgng, the cyclic property implies the final equality since tr(SA) = tr(ylgyng)

(ngAylg) yLAyZ»g. Equation (S18) is equivalent to the summand in (S7).

4. Additional Results Simulation Scenario 2

604 —+—— ——t—— :

50| SNIUaqoI4

loss

5
.
SS0| onEIpEND

Ng

Figure S1: Results for simulation Scenario 2i. Comparison of the targeted versus the un-
targeted approach in the banded population setting. We consider G = 2 classes
with the population precision matrix 2 for each class being a banded matrix
with p = 50 and k£ = 25 bands. The considered class sample sizes are n, €
{25,50,100}. The target matrix is taken to be equal over classes, i.e., T; = Ts.
The un-targeted situation is represented by T, = 0. The most informative
target is the spot-on target Ty = €. Two diagonal targets are also considered:
Ty = ally, with as = [Zj(S.);jl]/p; and Ty = ael,, with ces = p/tr(S.).
Hence, «a, represents the average of the inverse marginal variances of So and e
represents the inverse of the averaged eigenvalues of S,. Note that the boxplots
in the figure (for each class sample size ny) are ordered according to the legend
(given at the top of the image).
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Figure S2: Results for simulation Scenario 2ii. Comparison of the targeted versus the un-

targeted approach in the star population setting. We consider G = 2 classes with
the population precision matrix €2 for each class being a star matrix with p = 50
and where the first variable represents the internal node. The values of the off-
diagonal entries (1,7) and (j,1) taper-off by 1/(j + 1). The considered class
sample sizes are ng € {25,50,100}. The target matrix is taken to be equal over
classes, i.e., T1 = T2. The un-targeted situation is represented by T, = 0. The
most informative target is the spot-on target T, = €2. Two diagonal targets
are also considered: Ty = a,I,, with a, = [Zj(S.)j_jl]/p; and T, = ael,,
with aeo = p/tr(Se). Hence, a, represents the average of the inverse marginal
variances of S, and o represents the inverse of the averaged eigenvalues of S,.
Note that the boxplots in the figure (for each class sample size n,) are ordered
according to the legend (given at the top of the image).
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5. Additional Results Simulation Scenario 5

Fused gLasso Frobenius loss #E =3 Fused ridge Frobenius loss #E =3
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Fused gLasso Quadratic loss #E =3

10000
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1000
!

0.01 1.00 100.00

Figure S3: Comparison of the fused graphical lasso and the fused ridge estimator in the
Barabdsi graph game population setting with ny = 25 and where the number
of edges to add in each time step was taken to be 3. Each square on the two-
dimensional grid represents a (A, A¢)-combination. The number in each square
represents the estimated Risk for the corresponding combination. The blue
square (and corresponding number) indicate the lowest Risk achieved on the
grid. Left-hand panels give the results for the fused graphical lasso. Right-hand
panels give the results for the fused ridge estimator. Upper panels express the
Risk surface under Frobenius loss. Lower panels express the Risk surface under
quadratic loss.
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Fused gLasso Frobenius loss #E =5 Fused ridge Frobenius loss #E =5
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Figure S4: Comparison of the fused graphical lasso and the fused ridge estimator in the
Barabdsi graph game population setting with ny = 25 and where the number
of edges to add in each time step was taken to be 5. Each square on the two-
dimensional grid represents a (A, Ay)-combination. The number in each square
represents the estimated Risk for the corresponding combination. The blue
square (and corresponding number) indicate the lowest Risk achieved on the
grid. Left-hand panels give the results for the fused graphical lasso. Right-hand
panels give the results for the fused ridge estimator. Upper panels express the
Risk surface under Frobenius loss. Lower panels express the Risk surface under
quadratic loss.
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Fused gLasso Frobenius loss #E =1 Fused ridge Frobenius loss #E =1
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Figure S5: Comparison of the fused graphical lasso and the fused ridge estimator in the
Barabdsi graph game population setting with ny, = 50 and where the number
of edges to add in each time step was taken to be 1. Each square on the two-
dimensional grid represents a (A, Ay)-combination. The number in each square
represents the estimated Risk for the corresponding combination. The blue
square (and corresponding number) indicate the lowest Risk achieved on the
grid. Left-hand panels give the results for the fused graphical lasso. Right-hand
panels give the results for the fused ridge estimator. Upper panels express the
Risk surface under Frobenius loss. Lower panels express the Risk surface under
quadratic loss.
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Fused gLasso Frobenius loss #E =3 Fused ridge Frobenius loss #E =3
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Figure S6: Comparison of the fused graphical lasso and the fused ridge estimator in the
Barabdsi graph game population setting with ny, = 50 and where the number
of edges to add in each time step was taken to be 3. Each square on the two-
dimensional grid represents a (A, Ay)-combination. The number in each square
represents the estimated Risk for the corresponding combination. The blue
square (and corresponding number) indicate the lowest Risk achieved on the
grid. Left-hand panels give the results for the fused graphical lasso. Right-hand
panels give the results for the fused ridge estimator. Upper panels express the
Risk surface under Frobenius loss. Lower panels express the Risk surface under
quadratic loss.
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Fused gLasso Frobenius loss #E =5 Fused ridge Frobenius loss #E =5
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Figure S7: Comparison of the fused graphical lasso and the fused ridge estimator in the
Barabdsi graph game population setting with ny, = 50 and where the number
of edges to add in each time step was taken to be 5. Each square on the two-
dimensional grid represents a (A, Ay)-combination. The number in each square
represents the estimated Risk for the corresponding combination. The blue
square (and corresponding number) indicate the lowest Risk achieved on the
grid. Left-hand panels give the results for the fused graphical lasso. Right-hand
panels give the results for the fused ridge estimator. Upper panels express the
Risk surface under Frobenius loss. Lower panels express the Risk surface under
quadratic loss.
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Fused gLasso Frobenius loss Probability of edge-presence = 0.02 Fused ridge Frobenius loss Probability of edge—presence = 0.02
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Fused gLasso Quadratic loss Probability of edge—presence = 0.02
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Figure S8: Comparison of the fused graphical lasso and the fused ridge estimator in the
Erdos-Rényi random graph population setting with n, = 25 and where the prob-
ability of edge-presence is set to 1/p = .02. Each square on the two-dimensional
grid represents a (A, Af)-combination. The number in each square represents
the estimated Risk for the corresponding combination. The blue square (and
corresponding number) indicate the lowest Risk achieved on the grid. Left-hand
panels give the results for the fused graphical lasso. Right-hand panels give
the results for the fused ridge estimator. Upper panels express the Risk surface
under Frobenius loss. Lower panels express the Risk surface under quadratic
loss.
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Fused gLasso Frobenius loss Probability of edge-presence = 0.25 Fused ridge Frobenius loss Probability of edge—presence = 0.25
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Figure S9: Comparison of the fused graphical lasso and the fused ridge estimator in the
Erdos-Rényi random graph population setting with n, = 25 and where the
probability of edge-presence is set to .25. Each square on the two-dimensional
grid represents a (A, Af)-combination. The number in each square represents
the estimated Risk for the corresponding combination. The blue square (and
corresponding number) indicate the lowest Risk achieved on the grid. Left-hand
panels give the results for the fused graphical lasso. Right-hand panels give
the results for the fused ridge estimator. Upper panels express the Risk surface
under Frobenius loss. Lower panels express the Risk surface under quadratic
loss.
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Fused gLasso Frobenius loss Probability of edge-presence = 0.35 Fused ridge Frobenius loss Probability of edge—presence = 0.35
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Figure S10: Comparison of the fused graphical lasso and the fused ridge estimator in the
Erdos-Rényi random graph population setting with n, = 25 and where the
probability of edge-presence is set to .35. Each square on the two-dimensional
grid represents a (A, Ay)-combination. The number in each square represents
the estimated Risk for the corresponding combination. The blue square (and
corresponding number) indicate the lowest Risk achieved on the grid. Left-
hand panels give the results for the fused graphical lasso. Right-hand panels
give the results for the fused ridge estimator. Upper panels express the Risk
surface under Frobenius loss. Lower panels express the Risk surface under
quadratic loss.
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Fused gLasso Frobenius loss Probability of edge-presence = 0.02

Fused ridge Frobenius loss Probability of edge—presence = 0.02
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Figure S11: Comparison of the fused graphical lasso and the fused ridge estimator in the
Erdos-Rényi random graph population setting with ny, = 50 and where the
probability of edge-presence is set to 1/p = .02. Each square on the two-
dimensional grid represents a (A, Ay)-combination. The number in each square
represents the estimated Risk for the corresponding combination. The blue
square (and corresponding number) indicate the lowest Risk achieved on the
grid. Left-hand panels give the results for the fused graphical lasso. Right-hand
panels give the results for the fused ridge estimator. Upper panels express the
Risk surface under Frobenius loss. Lower panels express the Risk surface under

quadratic loss.
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Fused gLasso Frobenius loss Probability of edge-presence = 0.25 Fused ridge Frobenius loss Probability of edge—presence = 0.25
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Figure S12: Comparison of the fused graphical lasso and the fused ridge estimator in the
Erdos-Rényi random graph population setting with ny, = 50 and where the
probability of edge-presence is set to .25. Each square on the two-dimensional
grid represents a (A, Ay)-combination. The number in each square represents
the estimated Risk for the corresponding combination. The blue square (and
corresponding number) indicate the lowest Risk achieved on the grid. Left-
hand panels give the results for the fused graphical lasso. Right-hand panels
give the results for the fused ridge estimator. Upper panels express the Risk
surface under Frobenius loss. Lower panels express the Risk surface under
quadratic loss.
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Fused gLasso Frobenius loss Probability of edge-presence = 0.35 Fused ridge Frobenius loss Probability of edge—presence = 0.35
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Figure S13: Comparison of the fused graphical lasso and the fused ridge estimator in the
Erdos-Rényi random graph population setting with ny, = 50 and where the
probability of edge-presence is set to .35. Each square on the two-dimensional
grid represents a (A, Ay)-combination. The number in each square represents
the estimated Risk for the corresponding combination. The blue square (and
corresponding number) indicate the lowest Risk achieved on the grid. Left-
hand panels give the results for the fused graphical lasso. Right-hand panels
give the results for the fused ridge estimator. Upper panels express the Risk
surface under Frobenius loss. Lower panels express the Risk surface under
quadratic loss.
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Fused gLasso Frobenius loss Probability of edge—presence differs per class

Fused ridge Frobenius loss Probability of edge—presence differs per class
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Figure S14: Comparison of the fused graphical lasso and the fused ridge estimator in the
Erdos-Rényi random graph population setting with n, = 25 under class dis-
similarity. The probability of edge-presence is set to 1/p = .02 for class 1 and
.25 for class 2. Each square on the two-dimensional grid represents a (\, Af)-
combination. The number in each square represents the estimated Risk for
the corresponding combination. The blue square (and corresponding number)
indicate the lowest Risk achieved on the grid. Left-hand panels give the results
for the fused graphical lasso. Right-hand panels give the results for the fused
ridge estimator. Upper panels express the Risk surface under Frobenius loss.
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Lower panels express the Risk surface under quadratic loss.
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6. Additional Results Simulation Scenario 6
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Figure S15: Timing results (in seconds) for the fused ridge, LASICH, and BMGGM meth-
ods for each of the considered sub-scenarios. The x-axis represents the methods.
The y-axis has a logarithmic scale. Printed numbers above each boxplot then
represent the median runtime for the respective method in a given sub-scenario.
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